Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 212–220 | Cite as

Characterization of a Thermophilic Monosaccharide Stimulated β-Glucosidase from Acidothermus cellulolyticus

  • Yuwei Li
  • Mingwei Bu
  • Peng Chen
  • Xiaohong Li
  • Changwu Chen
  • Gui Gao
  • Yan Feng
  • Weiwei Han
  • Zuoming Zhang


The gene(ABK51908) from Acidothermus cellulolyticus encodes a mature protein of 484 residues with a calculated molecular mass of 53.0 kDa. Sequence analysis revealed that the protein had 59% identity to the β-glucosidases CAA82733, which belongs to glycoside hydrolase family 1(GH1). We cloned and expressed the gene in Escherichia coli BL21-Gold(DE3). The recombinant protein(AcBg) had an optimal pH and temperature of 7.0 and 70 °C, respectively. The specific activities of AcBg under optimal conditions were 290 and 33 U/mg for p-nitrophenyl-β-D-glucopyranoside(pNPG) and cellobiose, respectively. AcBg hydrolyzed the oligosaccharide sequentially from the non-reducing end to produce glucose units according to the results of HPLC analysis. AcBg showed high salt tolerance and monosaccharide-stimulation properties. Its activity rose more than 2-fold when 5 mol/L NaCl/KCl were added. The activity of the β-glucosidase was remarkably enhanced in the presence of 0.2 mol/L D-glucose(increased more than 1.9-fold), 0.1 mol/L α-methyl-D-glucose(increased more than 1.4-fold) and 1.0 mol/L D-xylose(increased more than 1.9-fold). The catalysis kinetics and structural changes in various concentrations of glucose were determined. The results indicate that glucose reduces substrate affinity and causes conformational changes.


β-Glucosidase Monosaccharide-stimulation Salt tolerance Thermophilic enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhang Y. H. P., Himmel M. E., Mielenz J. R., Biotechnol. Adv., 2006, 24, 452CrossRefGoogle Scholar
  2. [2]
    Gao S., Gao R., Chem. Res. Chinese Universities, 2017, 33(1), 1CrossRefGoogle Scholar
  3. [3]
    Beguin P., Annu. Rev. Microbiol., 1990, 44, 219CrossRefGoogle Scholar
  4. [4]
    Vinzant T., Adney W., Decker S., Baker J., Kinter M., Sherman N., Fox J., Himmel M., Appl. Biochem. Biotechnol., 2001, 91, 99CrossRefGoogle Scholar
  5. [5]
    Pei J., Pang Q., Zhao L., Fan S., Shi H., Biotechnol. Biofuels, 2012, 5, 1CrossRefGoogle Scholar
  6. [6]
    Chen M., Zhao J., Xia L., Carbohyd. Polym., 2008, 71, 411CrossRefGoogle Scholar
  7. [7]
    Brimer L., Cicalini A. R., Federici F., Petruccioli M., Arch. Micro-biol., 1998, 169, 106CrossRefGoogle Scholar
  8. [8]
    Pal S., Banik S. P., Ghorai S., Chowdhury S., Khowala S., Bioresour. Technol., 2010, 101, 2412CrossRefGoogle Scholar
  9. [9]
    Bhatia Y., Mishra S., Bisaria V., Crit. Rev. Biotechnol., 2002, 22, 375CrossRefGoogle Scholar
  10. [10]
    Choi I. S., Wi S. G., Jung S. R., Patel D. H., Bae H. J., J. Wood. Sci., 2009, 55, 329CrossRefGoogle Scholar
  11. [11]
    Souza F. H. M., Meleiro L. P., Machado C. B., Zimbardi A. L. R. L., Maldonado R. F., Souza T. A. C. B., Masui D. C., Murakami M. T., Jorge J. A., Ward R. J., J. Mol. Catal. B: Enzym., 2014, 106, 1CrossRefGoogle Scholar
  12. [12]
    Zhou C., Qian L., Ma H., Yu X., Zhang Y., Qu W., Zhang X., Xia W., Carbohyd. Polym., 2012, 90, 516CrossRefGoogle Scholar
  13. [13]
    Kong F., Yang J., Zhen Z., Chem. Res. Chinese Universities, 2015, 31(5), 774CrossRefGoogle Scholar
  14. [14]
    Uchima C. A., Tokuda G., Watanabe H., Kitamoto K., Arioka M., Appl. Environ. Microbiol., 2012, 78, 4288CrossRefGoogle Scholar
  15. [15]
    Zhou J., Zhang R., Shi P., Huang H., Meng K., Yuan T., Yang P., Yao B., Appl. Microbiol. Biotechnol., 2011, 92, 305CrossRefGoogle Scholar
  16. [16]
    Zhao L., Xie J., Zhang X., Cao F., Pei J., J. Mol. Cat. B: Enzym., 2013, 95, 62CrossRefGoogle Scholar
  17. [17]
    Li Y. K., Chang L. F., Shu H. H., Chir J., J. Chin. Chem. Soc., 1997, 44, 81CrossRefGoogle Scholar
  18. [18]
    Bhalla A., Bansal N., Kumar S., Bischoff K. M., Sani R. K., Bioresour. Technol., 2013, 128, 751CrossRefGoogle Scholar
  19. [19]
    Gumerov V. M., Rakitin A. L., Mardanov A. V., Ravin N. V., Archaea, 2015, 2015, 978632CrossRefGoogle Scholar
  20. [20]
    De C. P. J., Leite R. S., Prado H. F. A., Bocchini M. D. A., Gomes E., Silva R., Appl. Biochem. Biotechnol., 2014, 175, 723Google Scholar
  21. [21]
    Chen L., Li N., Zong M. H., Biochem., 2012, 47, 127Google Scholar
  22. [22]
    Krogh K. B., Harris P. V., Olsen C. L., Johansen K. S., Hojer Peder-sen J., Borjesson J., Olsson L., Appl. Microbiol. Biotechnol., 2010, 86, 143CrossRefGoogle Scholar
  23. [23]
    Jabbour D., Klippel B., Antranikian G., Appl. Microbiol. Biotechnol., 2012, 93, 1947CrossRefGoogle Scholar
  24. [24]
    Giuseppe P. O., Souza F. H. M., Zanphorlin L. M., Machado C. B., Ward R. J., Jorge J. A., Furriel R. P. M., Murakami M. T., Acta Crystallogr. Sect. D: Biol. Crystallogr., 2014, 70, 1631CrossRefGoogle Scholar
  25. [25]
    Yang Y., Zhang X., Yin Q., Fang W., Fang Z., Wang X., Zhang X., Xiao Y., Sci. Rep., 2015, 5, 17296CrossRefGoogle Scholar
  26. [26]
    Barabote R. D., Xie G., Leu D. H., Normand P., Necsulea A., Daubin V., Médigue C., Adney W. S., Xu X. C., Lapidus A., Geno. Res., 2009, 19, 1033CrossRefGoogle Scholar
  27. [27]
    Alahuhta M., Adney W. S., Himmel M. E., Lunin V. V., Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun., 2013, 69, 1335CrossRefGoogle Scholar
  28. [28]
    Wang J., Gao G., Li Y., Yang L., Liang Y., Jin H., Han W., Feng Y., Zhang Z., Int. J. Mol. Sci., 2015, 16, 25080CrossRefGoogle Scholar
  29. [29]
    Zhang Q., Zhang W., Lin C., Xu X., Shen Z., Prot. Exp. Purif., 2012, 82, 279CrossRefGoogle Scholar
  30. [30]
    Zhang Y. H. P., Cui J., Lynd L. R., Kuang L. R., Biomacromol., 2006, 7, 644CrossRefGoogle Scholar
  31. [31]
    Mamiatis T., Fritsch E., Sambrook J., Engel J., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Wiley Online Library, New York, 1985 Google Scholar
  32. [32]
    Chen Y., Sun D., Zhou Y., Liu L., Han W., Zheng B., Wang Z., Zhang Z., Int. J. Mol. Sci., 2014, 15, 5717CrossRefGoogle Scholar
  33. [33]
    Bradford M. M., Plant, 1976, 168, 214Google Scholar
  34. [34]
    Rauscher E., Neumann U., Schaich E., Von Bülow S., Wahlefeld A., Clin. Chem., 1985, 31, 14Google Scholar
  35. [35]
    Lineweaver H., Burk D., J. Amer. Chem. Soc., 1934, 56, 658CrossRefGoogle Scholar
  36. [36]
    Miller G. L., Anal. Chem., 1959, 31, 426CrossRefGoogle Scholar
  37. [37]
    Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J., Nucl. Acid. Res., 1997, 25, 3389CrossRefGoogle Scholar
  38. [38]
    Badieyan S., Bevan D. R., Zhang C., Biochem., 2012, 51, 8907CrossRefGoogle Scholar
  39. [39]
    Miao L. L., Hou Y. J., Fan H. X., Qu J., Qi C., Liu Y., Li D. F., Liu Z. P., Appl. Environ. Microbiol., 2016, 82, 2021CrossRefGoogle Scholar
  40. [40]
    Mai Z., Yang J., Tian X., Li J., Zhang S., Appl. Biochem. Biotechnol., 2013, 169, 1512CrossRefGoogle Scholar
  41. [41]
    Voorhorst W., Eggen R., Luesink E. J., De Vos W., J. Bacteriol., 1995, 177, 7105CrossRefGoogle Scholar
  42. [42]
    Lee J. M., Kim Y. R., Kim J. K., Jeong G. T., Ha J. C., Kong I. S., Biopro. Biosys. Eng., 2015, 38, 1335CrossRefGoogle Scholar
  43. [43]
    Bowers E. M., Ragland L. O., Byers L. D., Biochim. Biophy. Acta, 2007, 1774, 1500CrossRefGoogle Scholar
  44. [44]
    Chamoli S., Kumar P., Navani N. K., Verma A. K., Int. J. Biol. Macromol., 2016, 85, 425CrossRefGoogle Scholar
  45. [45]
    Ramachandran P., Tiwari M. K., Singh R. K., Haw J. R., Jeya M., Lee J. K., Biochem., 2012, 47, 99Google Scholar
  46. [46]
    Shin K. C., Oh D. K., J. Biotechnol., 2014, 172, 30CrossRefGoogle Scholar
  47. [47]
    Pérez-Pons J. A., Rebordosa X., Querol E., Biochim. Biophy. Acta, 1995, 1251, 145CrossRefGoogle Scholar
  48. [48]
    Uchiyama T., Yaoi K., Miyazaki K., Front. Microbiol., 2015, 6, 548CrossRefGoogle Scholar
  49. [49]
    Lu J., Du L., Wei Y., Hu Y., Huang R., Acta. Biochim. Biophy. Sin., 2013, 45, 664CrossRefGoogle Scholar
  50. [50]
    Saha B. C., Bothast R. J., Appl. Environ. Microbiol., 1996, 62, 3165Google Scholar
  51. [51]
    Riou C., Salmon J. M., Vallier M. J., Günata Z., Barre P., Appl. En-viron. Microbiol., 1998, 64, 3607Google Scholar
  52. [52]
    Rajasree K. P., Mathew G. M., Pandey A., Sukumaran R. K., J. Ind. Microbiol. Biotechnol., 2013, 40, 967CrossRefGoogle Scholar
  53. [53]
    Yang F., Yang X., Li Z., Du C., Wang J., Li S., Appl. Microbiol. Bio-technol., 2015, 99, 8903CrossRefGoogle Scholar
  54. [54]
    Yan T. R., Lin C. L., Biosci. Biotechnol. Biochem., 1997, 61, 965CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuwei Li
    • 1
    • 2
  • Mingwei Bu
    • 1
  • Peng Chen
    • 3
  • Xiaohong Li
    • 4
  • Changwu Chen
    • 4
  • Gui Gao
    • 1
  • Yan Feng
    • 1
  • Weiwei Han
    • 1
  • Zuoming Zhang
    • 1
  1. 1.Key Laboratory for Molecular Enzymology & Engineering, Ministry of Education, School of Life ScienceJilin UniversityChangchunP. R. China
  2. 2.State Key Laboratory of Supramolecular Structure and Materials, College of ChemistryJilin UniversityChangchunP. R. China
  3. 3.The Second Hospital of Jilin UniversityChangchunP. R. China
  4. 4.College of Food EngineeringJilin Engineering Normal UniversityChangchunP. R. China

Personalised recommendations