Sustainable Synthesis of Hierarchically Porous Silicalite-1 Zeolite by Steam-assisted Crystallization of Solid Raw Materials Without Secondary Templates

  • Xiaofang Liu
  • Shangjing Zeng
  • Runwei Wang
  • Zongtao Zhang
  • Shilun Qiu
Article
  • 5 Downloads

Abstract

Hierarchical silicalite-1 zeolites were obtained from the direct conversion of a mixture of ground solid raw materials via a steam-assisted crystallization(SAC) method without involvement of any mesoscale template. Only a trace amount of water was necessary during the crystallization, implying that the amount of water can be dramatically reduced, which still offers easy separation and high yields. The simple procedure involved only grinding and heating, which not only saves resources and energy, but also significantly reduces the discharge of eco-friendly synthesis of zeolites for practical applications. Compared to conventional bulk silicalite-1, the nanosized hierarchical zeolites with MFI structure show enhanced removal capabilities for methylene blue owing to their hierarchical porosity.

Keywords

Hierarchically silicalite-1 zeolite Steam-assisted crystallization Easy separation Secondary template excluding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7400_MOESM1_ESM.pdf (683 kb)
Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates

References

  1. [1]
    Wang J., Park J. N., Jeong H. C., Choi K. S., Wei X. Y., Hong S. I., Lee C. W., Energy & Fuels 2004, 18, 470CrossRefGoogle Scholar
  2. [2]
    Vu D. V., Miyamoto M., Nishiyama N., Ichikawa S., Egashira Y., Ueyama K., Micro. Meso. Mater. 2008, 115, 106CrossRefGoogle Scholar
  3. [3]
    Chen F., Ma L., Cheng D., Zhan X., Catal. Commun. 2012, 18, 110CrossRefGoogle Scholar
  4. [4]
    Yin C. Y., Ni R., Bao X., Chen Y. H., Micro. Meso. Mater. 2015, 202, 133CrossRefGoogle Scholar
  5. [5]
    Xue Z. T., Ma J. H., Hao W. M., Bai X., Kang Y. H., Liu J. H., Li R. F., J. Mater. Chem., 2012, 22, 2532CrossRefGoogle Scholar
  6. [6]
    Chang C. C., Teixeira A. R., Li C., Dauenhauer P. J., Fan W., Lang-muir 2013, 29, 13941Google Scholar
  7. [7]
    Welk M. E., Bonhomme F., Nenoff T. M., Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 2004, 49, 245Google Scholar
  8. [8]
    Lee C. K., Chiang A. S. T., J. Chem. Soc., Faraday Trans. 1996, 92, 3445CrossRefGoogle Scholar
  9. [9]
    Song L., Sun Z., Ban H., Dai M., Rees L., Adsorption 2005, 11, 325CrossRefGoogle Scholar
  10. [10]
    Rafatullah M., Sulaiman O., Hashim R., Ahmad A., J. Hazard. Mater., 2010, 177, 70CrossRefGoogle Scholar
  11. [11]
    Hu Q., Dou B. J., Tian H., Li J. J., Li P., Hao Z. P., Micro. Meso. Mater. 2010, 129, 30CrossRefGoogle Scholar
  12. [12]
    Sun X. Y., Li J. W., Li Y. X., Yan S. C., Chen B. H., Chem. Res. Chi-nese Universities 2009, 25(3), 377Google Scholar
  13. [13]
    Zhang Q., Hu S., Zhang L., Wu Z., Gong Y., Dou T., Green Chemi-stry 2014, 16, 77CrossRefGoogle Scholar
  14. [14]
    Cui T. L., Li X. H., Lv L. B., Wang K. X., Su J., Chen J. S., Chem. Commun. 2015, 51, 12563CrossRefGoogle Scholar
  15. [15]
    Wei Y., Parmentier T. E., Jong K. P., Zecevic J., Chem. Soc. Rev. 2015, 44, 7234CrossRefGoogle Scholar
  16. [16]
    Moller K., Bein T., Chem. Soc. Rev. 2013, 42, 3689CrossRefGoogle Scholar
  17. [17]
    Groen J. C., Moulijn J. A., Ramirez J. P., J. Mater. Chem., 2006, 16, 2121CrossRefGoogle Scholar
  18. [18]
    Verboekend D., Vile G., Ramirez J. R., Adv. Funct. Mater. 2012, 22, 916CrossRefGoogle Scholar
  19. [19]
    Chen H., Wydra J., Zhang X., Lee P. S., Wang Z., Fan W., Tsapatsis M., J. Am. Chem. Soc., 2011, 133, 12390CrossRefGoogle Scholar
  20. [20]
    Sun C., Du J., Liu J., Yang Y., Ren N., Shen W., Xu H., Tang Y., Chem. Commun. 2010, 46, 2671CrossRefGoogle Scholar
  21. [21]
    Song Y. D., Hua Z. L., Zhu Y., Zhou X. X., Wu W., Zhang L. L., Shi J. L., Chem. Asian J. 2012, 7, 2772CrossRefGoogle Scholar
  22. [22]
    Tao Y., Kanoh H., Kaneko K., J. Am. Chem. Soc., 2003, 125, 6044CrossRefGoogle Scholar
  23. [23]
    Liu S. Z., Cao X. J., Li L. S., Li C. J., Li Y. Y., Xiao F. S., Colloids and Surfaces A: Physicochem. Eng. Aspects 2008, 318, 269CrossRefGoogle Scholar
  24. [24]
    Inayat A., Knoke I., Spiecker E., Angew. Chem. Int. Ed. 2012, 51, 1CrossRefGoogle Scholar
  25. [25]
    Koekkoek A., Tempelman C., Degirmenci V., Guo M., Feng Z., Li C., Hensen E., Catalysis Today 2011, 168, 96CrossRefGoogle Scholar
  26. [26]
    Chal R., Gerardin C., Bulut M., Donk S., Chem. Cat. Chem. 2011, 3, 67Google Scholar
  27. [27]
    Tosheva L., Valtchev V. P., Chem. Mater. 2005, 17, 2494CrossRefGoogle Scholar
  28. [28]
    Pan F., Lu X. C., Zhu Q. S., Zhang Z. M., Yan Y., Wang T. Z., Chen S. W., J. Mater. Chem. A, 2014, 2, 20667CrossRefGoogle Scholar
  29. [29]
    Zhang Y. C., Zhu K., Zhou X. G., Yuan W. K., New J. Chem., 2014, 38, 5808CrossRefGoogle Scholar
  30. [30]
    Naik S. P., Chiang A. S. T., Thompson R. W., J. Phys. Chem. B, 2003, 107, 7006CrossRefGoogle Scholar
  31. [31]
    Li W. L., Ma T., Zhang Y. F., Gong Y. J., Wu Z. J., Dou T., Cryst. Eng. Comm. 2015, 17, 5680CrossRefGoogle Scholar
  32. [32]
    Tsai R. F., Du K. J., Cheng T. Y., Ho G. H., Wu P. H., Liu S. B., Tsai T. C., Catalysis Today 2013, 204, 30CrossRefGoogle Scholar
  33. [33]
    Jin Y. Y., Chen X., Sun Q., Sheng N., Liu Y., Bian C. Q., Chen F., Meng X. J., Xiao F. S., Chem. Eur. J. 2014, 20, 17616CrossRefGoogle Scholar
  34. [34]
    Zhou J., Hua Z., Shi J. L., He Q. J., L. Guo M., Ruan M. L., Chem. Eur. J. 2009, 15, 12949CrossRefGoogle Scholar
  35. [35]
    Moller K., Yilmaz B., Muller U., Bein T., Chem. Eur. J. 2012, 18, 7671CrossRefGoogle Scholar
  36. [36]
    Zhu K., Sun J. M., Liu J., Wang L. Q., Wan H. Y., Hu J. Z., Wang Y., Peden C. H. F., Nie Z., ACS Catal., 2011, 1, 682CrossRefGoogle Scholar
  37. [37]
    Matsukata M., Ogura M., Osaki T., Rao P. R., Nomura M., Kikuchi E., Topics in Catalysis 1999, 9, 77CrossRefGoogle Scholar
  38. [38]
    Ren L. M., Wu Q. M., Yang C. G., Zhu L. F., Li C. J., Zhang P. L., Zhang H. Y., Meng X. J., Xiao F. S., J. Am. Chem. Soc., 2012, 134, 15173CrossRefGoogle Scholar
  39. [39]
    Wu Q. M., Liu X. L., Zhu L. F., Ding L. H., Gao P., Wang X., Pan S. X., Bian C. Q., Meng X. J., Xu J., Deng F., Maurer S., Muller U., Xiao F. S., J. Am. Chem. Soc., 2015, 137, 1052CrossRefGoogle Scholar
  40. [40]
    Weitkamp J., Hunger M., Studies in Surface Science and Catalysis 2005, 155, 1CrossRefGoogle Scholar
  41. [41]
    Matsukata M., Osaki T., Ogura M., Kikuchi E., Micro. Meso. Mater. 2002, 56, 1CrossRefGoogle Scholar
  42. [42]
    Rafatullah M., Sulaiman O., Hashim R., Ahmad A., J. Hazard. Mater., 2010, 177, 70CrossRefGoogle Scholar
  43. [43]
    Sapawe N., Jalil A., Triwahyono S., Shah M., Jusoh R., Salleh N., Hameed B., Karim A., Chem. Eng. J. 2013, 229, 388CrossRefGoogle Scholar
  44. [44]
    Xu G. R., Wang J. N., Li C. J., RSC Adv., 2013, 3, 12985CrossRefGoogle Scholar
  45. [45]
    Zhou J., Hua Z., Wu W., Liu Z., Zhu Y., Chen Y., Shi J. L., Dalton Trans. 2011, 40, 12667CrossRefGoogle Scholar
  46. [46]
    Hammed A. K., Dewayanto N., Du D., Rahima M. H., J. Environ. Chem. Engineer., 2016, 4(3), 2607CrossRefGoogle Scholar
  47. [47]
    Kariminezhad H., Habibi M., Mirzabayi N., J. Photochem. Photobio. B: Biology, 2015, 148, 107CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofang Liu
    • 1
  • Shangjing Zeng
    • 1
    • 2
  • Runwei Wang
    • 1
  • Zongtao Zhang
    • 1
  • Shilun Qiu
    • 1
  1. 1.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.CAS Key Laboratory of Synthetic Rubber, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China

Personalised recommendations