Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 358–362 | Cite as

Two Coordination Compounds Bearing Bis(2-dimethylaminoethyl) Ether: Syntheses, Crystal Structures and Catalytic Application to the Henry Reaction

  • Chao Liu
  • Yijie Liu
  • Lili Zhang
  • Kun Jiang
  • Li Zhang


Two novel coordination compounds, namely [Cu2(BDMAEE)(CH3COO)4] n (1) and [Ni(BDMAEE)Cl2](2) [BDMAEE=bis(2-dimethylaminoethyl) ether], have been synthesized and characterized by IR, elemental analysis, PXRD and X-ray single crystal diffraction. In compound 1, the central Cu(II) ion is coordinated with four oxygen atoms and one nitrogen atom, forming a distorted square pyramidal geometry. The asymmetric units composed of one Cu(II) ion, two acetates and a half of BDMAEE are connected to form an infinite 1D chain structure by the bridging acetate and the BDMAEE. In compound 2, the central Ni(II) ion is coordinated with one oxygen atom, two chlorine anions and two nitrogen atoms, forming a distorted square pyramidal geometry. The compounds exhibited excellent catalytic properties in the Henry reaction of nitromethane with some aromatic aldehydes, and the optimized reaction conditions were obtained.


Copper compound Nickel compound Crystal structure Henry reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material (411 kb)
Supplementary material, approximately 410 KB.


  1. [1]
    Zhang X., Dong G. Y., Liu Y. G., Cui G. H., J. Inorg. Organomet. Polym. Mater., 2015, 26(1), 1Google Scholar
  2. [2]
    Kuang H. M., Chen W. T., Luo Q. Y., Xu Y. P., Zhang X., Liu J., Synth. React. Inorg. Met. Org. Chem. 2015, 46(2), 221CrossRefGoogle Scholar
  3. [3]
    Zhao H., Zhang C., J. Inorg. Organomet. Polym. Mater., 2015, 25(4), 1CrossRefGoogle Scholar
  4. [4]
    Zhou B., Xu F. C., Yang J., Yao J., Xiao Y. H., Mater. Lett. 2013, 107(10), 206CrossRefGoogle Scholar
  5. [5]
    Masoomi M. Y., Morsali A., Coord. Chem. Rev., 2012, 256(23/24), 2921CrossRefGoogle Scholar
  6. [6]
    Hu J. M., Hecke K. V., Yu B. Y., Cui G. H., Inorg. Chem. Commun. 2015, 61, 217CrossRefGoogle Scholar
  7. [7]
    Qin L., Li Y. H., Ma P. J., Cui G. H., J. Mol. Struct., 2013, 1051(44), 215CrossRefGoogle Scholar
  8. [8]
    Xu X., Liu P. J., Yu Y. H., Hou G. F., Gao J. S., Ma D. S., Polyhedron 2015, 95, 69CrossRefGoogle Scholar
  9. [9]
    Sadhukhan D., Ray A., Butcher R. J., García C. J. G., Dede B., Mitra S., Inorg. Chim. Acta 2011, 376(1), 245CrossRefGoogle Scholar
  10. [10]
    Li D. X., Ren Z. G., Young D. J., Lang J. P., Eur. J. Inorg. Chem., 2015, 2015(11), 1981CrossRefGoogle Scholar
  11. [11]
    Jiao C. H., He C. H., Geng J. C., Cui G. H., Transition Met. Chem. 2011, 37(1), 17CrossRefGoogle Scholar
  12. [12]
    Luo M., Jiang L., Liu S. T., Li Q. R., Zhou S. M., Inorg. Chem. Commun. 2010, 13(9), 1009CrossRefGoogle Scholar
  13. [13]
    Abbo H. S., Titinchi S. J. J., Prasad R., Chand S., J. Mol. Catal. A: Chem., 2005, 225(2), 225CrossRefGoogle Scholar
  14. [14]
    Wu J. Q., Mu J. S., Zhang S. W., Li Y. S., J. Polym. Sci. Part A: Polym. Chem., 2010, 48(5), 1122CrossRefGoogle Scholar
  15. [15]
    Vijaykumar G., Mandal S. K., Dalton Trans. 2016, 45(17), 7421CrossRefPubMedGoogle Scholar
  16. [16]
    Fan R. Q., Yang Y. L., Lu Z. W., Chem. Res. Chinese Universities 2008, 24(1), 4CrossRefGoogle Scholar
  17. [17]
    Zhang X., Dong G. Y., Yu B. Y., Hecke K. V., Cui G. H., Transition Met. Chem. 2015, 40(8), 904Google Scholar
  18. [18]
    Najafi M., Abbasi A., Masteri-Farahani M., Rodrigues V. H. N., Inorg. Chim. Acta 2015, 433, 21CrossRefGoogle Scholar
  19. [19]
    Emadi H., Jahromi B. T., Kharat A. N., J. Chem. Sci., 2017, 129(3), 373CrossRefGoogle Scholar
  20. [20]
    Angulo B., Garcia J. I., Herrerias C. I., Mayoral J. A., Minana A. C., Cheminform 2012, 77(13), 5525Google Scholar
  21. [21]
    Hazra S., Karmakar A., Dlháň L., Boča R., Pombeiro A. J. L., New J. Chem., 2015, 39(5), 3424CrossRefGoogle Scholar
  22. [22]
    Luo M., Zhang Z. J., Wang L., Zhang J. C., Chinese J. Struct. Chem., 2015, 34(12), 1851Google Scholar
  23. [23]
    Sheldrick G. M., SHELXS-97, Program for the Solution of Crystal Structure, University of Göttingen, Göttingen, 1997Google Scholar
  24. [24]
    Sheldrick G. M., SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Göttingen, 1997Google Scholar
  25. [25]
    Xia W. J., Xie Z. B., Jiang G. F., Le Z. G., Molecules 2013, 18(11), 13910CrossRefPubMedGoogle Scholar
  26. [26]
    Aydin A. E., Appl. Organomet. Chem. 2013, 27(5), 283CrossRefGoogle Scholar
  27. [27]
    Meesala Y., Wu H. L., Koteswararao B., Kuo T. S., Lee W. Z., Orga-nometallics 2014, 33(17), 4385Google Scholar
  28. [28]
    Wang X. B., Lu Z. A., Lu W. G., Chinese J. Struct. Chem., 2015, 34(9), 1410Google Scholar
  29. [29]
    Santra R. C., Sengupta K., Dey R., Shireen T., Das P., Guin P. S., Mukhopadhyay K., Das S., J. Coord. Chem., 2014, 67(2), 265CrossRefGoogle Scholar
  30. [30]
    Lqbal M., Ali S., Rehman Z. U., Muhammadb N., Sohail M., Panda-rinathan V., J. Coord. Chem., 2014, 67(10), 1731CrossRefGoogle Scholar
  31. [31]
    Wu X. M., Liu G. C., Wang X. L., Shao J. Y., Lin H. Y., Wang X., Chem. Res. Chinese Universities 2016, 32(5), 719CrossRefGoogle Scholar
  32. [32]
    Jia W. G., Zhao C. A., Ma L. Y., Sheng E. H., Chinese J. Struct. Chem., 2014, 33(2), 189Google Scholar
  33. [33]
    Selvakumar S., Sivasankaran D., Singh V. K., Cheminform 2009, 40(52), 3156CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Liu
    • 1
  • Yijie Liu
    • 1
  • Lili Zhang
    • 1
  • Kun Jiang
    • 1
  • Li Zhang
    • 1
  1. 1.School of Chemistry and Chemical EngineeringSuzhou UniversitySuzhouP. R. China

Personalised recommendations