Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 241–246 | Cite as

Electronic and Spectroscopic Properties of La2@C112 Isomers

  • Mingqian Wang
  • Boning Wang
  • Weiqi Li
  • Xin Zhou
  • Li Yang
  • Weiquan Tian
Article
  • 26 Downloads

Abstract

Among the 3352 isolated pentagon rule(IPR) isomers and 129073 non-IPR isomers satisfying adjacent pentagon pairs(APPs)≤2 of fullerene C112, the lowest-energy IPR and non-IPR isomers of C112 and C1126- have been fully screened by the density functional tight-binding(DFTB) and density functional theory(DFT) methods for studying the electronic and spectroscopic properties of La2@C112. The structural features and infrared and absorption spectra of those isomers were analyzed in detail, and the characteristic fingerprint absorption peaks were assigned. To clarify the relative stabilities of La2@C112 isomers at high temperature, entropy contributions were determined at the B3LYP level. IPR isomer La2@C112(C2:860136) is not the lowest-energy isomer but is one of the most important isomers. This is the first work that considers non-IPR C112 isomers when exploring the structure and properties of La2@C112.

Keywords

C112 fullerene La-endohedral metallofullerene(La-EMF) Thermostability IR spectrum UV-Vis spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7330_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.10 MB.

References

  1. [1]
    Kroto H. W., Heath J. R., Curl R. F., Smalley R. E., Nature, 1985, 318, 162CrossRefGoogle Scholar
  2. [2]
    Krätschmer W., Lamb L. D., Fostiropoulos K., Huffman D. R., Na-ture, 1990, 347, 354Google Scholar
  3. [3]
    Kadish K. M., Ruoff R., Fullerenes: Chemistry, Physics, and Technology, Wiley-VCH, New York, 2000 Google Scholar
  4. [4]
    Schön J. H., Kloc Ch., Siegrist T., Steigerwald M., Svensson C., Batlogg B., Nature, 2011, 413, 831CrossRefGoogle Scholar
  5. [5]
    Peet J., Soci C., Coffin R. C., Nguyen T. Q., Mikhailovsky A., Moses D., Bazan G. C., Appl. Phys. Lett., 2006, 89, 252105CrossRefGoogle Scholar
  6. [6]
    Amer M. S., Busbee J., J. Phys. Chem. C, 2011, 115, 10483CrossRefGoogle Scholar
  7. [7]
    Vakhrushev A. V., Suyetin M. V., Nanotechnology, 2009, 20, 125602CrossRefGoogle Scholar
  8. [8]
    Tian W. Q., Chen D. L., Cui Y. H., Feng J. K., J. Comput. Theor. Nanosci., 2009, 6, 239CrossRefGoogle Scholar
  9. [9]
    Zhou X., Li W. Q., Shao B., Tian W. Q., J. Phys. Chem. C, 2013, 117, 23172CrossRefGoogle Scholar
  10. [10]
    Lu X., Feng L., Akasaka T., Nagase S., Chem. Soc. Rev., 2013, 41, 7723CrossRefGoogle Scholar
  11. [11]
    Zhang X., Li X. D., Ma L. X., Chem. Res. Chinese Universities, 2014, 30(6), 1044CrossRefGoogle Scholar
  12. [12]
    Tamm N. B., Sidorov L. N., Kemnitz E., Troyanov S., Angew. Chem. Int. Ed., 2009, 48, 9102CrossRefGoogle Scholar
  13. [13]
    Yang S. F., Wei T., Kemnitz E., Troyanov S. I., Angew. Chem. Int. Ed., 2012, 51, 8239CrossRefGoogle Scholar
  14. [14]
    Yang H., Jin H. X., Che Y. L., Hong B., Liu Z. Y., Gharamaleki J. A., Olmstead M. M., Balch A. L., Chem. Eur. J.: Chemistry., 2012, 18, 2792CrossRefGoogle Scholar
  15. [15]
    Mercado B. Q., Jiang A., Yang H., Wang Z. M., Jin H. X., Liu Z. Y., Olmstead M. M., Balch A. L., Angew. Chem. Int. Ed., 2009, 48, 9114CrossRefGoogle Scholar
  16. [16]
    Ravinder P., Subramanian V., Comput. Thero. Chem., 2012, 998, 106CrossRefGoogle Scholar
  17. [17]
    Shao N., Gao Y., Zeng X. C., J. Phys. Chem. C, 2007, 111, 17671CrossRefGoogle Scholar
  18. [18]
    Xu L., Cai W. S., Shao X. G., Comput. Mat. Sci., 2008, 41, 522CrossRefGoogle Scholar
  19. [19]
    Xu L., Cai W. S., Shao X. G., J. Phys. Chem. A, 2006, 110, 9247CrossRefGoogle Scholar
  20. [20]
    Zhao X., Slanina Z., Comput. Thero. Chem., 2003, 636, 195Google Scholar
  21. [21]
    Zhao X., Goto H., Slanina Z., Chem. Phys., 2004, 306, 93CrossRefGoogle Scholar
  22. [22]
    Calaminici P., Geudtner G., Köster A. M., J. Chem. Theory. Comput., 2009, 5, 29CrossRefGoogle Scholar
  23. [23]
    Popov A. A., Dunsch L., J. Am. Chem. Soc., 2007, 129, 11835CrossRefGoogle Scholar
  24. [24]
    Yang T., Zhao X., Nagase S., Phys. Chem. Chem. Phys., 2001, 13, 5034CrossRefGoogle Scholar
  25. [25]
    Guo Y. J., Yang T., Nagase S., Zhao X., Inorg. Chem., 2014, 53, 2012CrossRefGoogle Scholar
  26. [26]
    Zhao X., Gao W. Y., Yang T., Zheng J. J., Li L. S., He L., Cao R. J., Nagase S., Inorg. Chem., 2012, 51, 2039CrossRefGoogle Scholar
  27. [27]
    Lu X., Akasaka T., Nagase S., Rare Earth Coordination Chemistry: Fundamentals and Applications, Wiley-Blackwell, Singapore, 2009, 273Google Scholar
  28. [28]
    Brinkmann G., Friedrichs O. D., Lisken S., Peeters A., van Cleemput N., Match-Commun. Math. Comput. Chem., 2010, 63, 533Google Scholar
  29. [29]
    Porezag D., Frauenheim Th., Köhler Th., Seifert G., Kaschner R., Phys. Rev. B: Condens. Matter., 1995, 51, 12947CrossRefGoogle Scholar
  30. [30]
    Bai H. C., Xue P., Tao J. Y., Ji W. X., Han Z. M., Ma Y. J., Ji Y. Q., Comput. Thero, Chem., 2015, 1069, 138CrossRefGoogle Scholar
  31. [31]
    Casida M. E., Jamorski C., Casida K. C., Salahub D. R., J. Chem. Phys., 1998, 108, 4439CrossRefGoogle Scholar
  32. [32]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 03, Revision E.01, Gaussian Inc., Pittsburgh PA, 2003 Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Ministry of Industry and Information, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinP. R. China
  2. 2.Department of PhysicsHarbin Institute of TechnologyHarbinP. R. China
  3. 3.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China

Personalised recommendations