Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 269–273 | Cite as

Enhanced Efficiency of Dye-sensitized Solar Cells Using rGO@TiO2 Nanotube Hybrids

  • Rui Liu
  • Yingjie Qiao
  • Yingjin Song
  • Kehan Song
  • Chuan Liu
Article
  • 6 Downloads

Abstract

We established a novel strategy for the synthesis of reduced graphene oxide(rGO)@TiO2 nanotube hybrids using an 18 W UV-assisted photo-catalytic reduction method for utilization as photo-anode of dye-sensitized solar cells(DSSCs). The photo-conversion efficiency of DSSCs was significantly enhanced after the addition of rGO, and in addition, the photo-anode showed decreased internal resistance. Analysis of rGO@TiO2 hybrids by transmissions scanning electron microscopy(TEM), X-ray diffraction(XRD), Raman spectra, N2 adsorption and desorption, atomic force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS) demonstrates that the rGO modified TiO2 nanotubes can increase the short-circuit current and the conversion efficiency of dye-sensitized solar cells. The efficiency is improved by almost two folds as much compared to those of the bare TiO2 nanotubes.

Keywords

TiO2 nanotube array Reduced graphene oxide(rGO) Hybrid Dye-sensitized solar cell(DSSC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    O’Regan B., Grätzel M., Nature, 1991, 353, 737CrossRefGoogle Scholar
  2. [2]
    Grätzel M., Nature, 2001, 414, 338CrossRefGoogle Scholar
  3. [3]
    Zhu K., Neale N. R., Miedaner A., Frank A. J., Nano Lett., 2007, 7, 69CrossRefGoogle Scholar
  4. [4]
    Liu Z. Y., Subramania V., Misra M., J. Phys. Chem. C, 2009, 113, 14033Google Scholar
  5. [5]
    Song J. N., Zheng M. J., Zhang B., Wang F. Z., Ma L. G., Li Y. B., Zhu C. Q., Ma L., Shen W. Z., Nano-Micro Letters, 2017, 9(2), 13CrossRefGoogle Scholar
  6. [6]
    Shen Q., Sato T., Hashimoto M., Chen C. C., Toyoda T., Thin Solid Films, 2006, 499, 299CrossRefGoogle Scholar
  7. [7]
    Wei X., Nbelayim P. S., Kawamura G., Muto H., Matsuda A., Nanotechnology, 2017, 28(13), 135207CrossRefGoogle Scholar
  8. [8]
    Mukherjee B., Wilson W., Subramanian V. R., Nanoscale, 2013, 5(1), 269CrossRefGoogle Scholar
  9. [9]
    Wang J., Lin Z., Chem. Mater., 2012, 22(2), 579CrossRefGoogle Scholar
  10. [10]
    Liu R., Yang W. D., Qiang L. S., Liu H. Y., J. Power Sources, 2012, 220, 153CrossRefGoogle Scholar
  11. [11]
    Liu R., Qiang L. S., Yang W. D., Liu H. Y., J. Power Sources, 2013, 223, 254CrossRefGoogle Scholar
  12. [12]
    Liu R., Yang W. D., Qiang L. S., J. Power Sources, 2012, 199, 418CrossRefGoogle Scholar
  13. [13]
    Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666CrossRefGoogle Scholar
  14. [14]
    Du Y., Gao Y., Kong F., Zhang S., Du L., Inter. J. Hydrogen Energy, 2013, 38(28), 12310CrossRefGoogle Scholar
  15. [15]
    Hu X. H., Ma X. H., Tan H. P., Li D., Micro Nano Letters, 2013, 8(6), 277CrossRefGoogle Scholar
  16. [16]
    Lv H. R., Hu H. H., Cui C., Lin P., Wang P., Wang H., Xu L. B., Pan J. Q., Li C. R., Applied Surface Science, 2017, 422, 1015CrossRefGoogle Scholar
  17. [17]
    Taki M., Rezaei B., Fani N., Borandeh S., Abdolmaleki A., Ensafi A. A., Applied Surface Science, 2017, 403, 218CrossRefGoogle Scholar
  18. [18]
    Fan J. J., Liu S. W., Yu J. G., J. Mater. Chem., 2012, 33, 17027CrossRefGoogle Scholar
  19. [19]
    Yu X. Q., Lin D. M., Li P., Su Z. Q., Solar Energy Mater. Solar Cells, 2017, 172, 252CrossRefGoogle Scholar
  20. [20]
    Wei L. G., Wang P., Yang Y. L., Dong Y. L., Fan R. Q., Song W. N., Qiu Y. L., Yang Y. Z., Luan T. Z., Thin Solid Films, 2017, 639, 12CrossRefGoogle Scholar
  21. [21]
    Dembele K. T., Selopal G. S., Soldano C., Nechache R., Rimada J. C., Concina L., Sberveglieri G., Rosei F., Vomiero A., J. Phys. Chem. C, 2013, 117, 14510CrossRefGoogle Scholar
  22. [22]
    Lu Z., Chen G., Hao W., Sun G., Li Z., RSC Adv., 2015, 5, 72916CrossRefGoogle Scholar
  23. [23]
    Jang J. W., Cho S., Moon G. H., Ihm K., Kim J. Y., Youn D. H., Lee S., Lee Y. H., Choi W., Eur. J. Chem., 2012, 18, 2762CrossRefGoogle Scholar
  24. [24]
    Chen J., Yao B., Li C., Shi G., Carbon, 2013, 64, 225CrossRefGoogle Scholar
  25. [25]
    Ferrari A. C., J. Power Sources, 2007, 143, 47Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui Liu
    • 1
    • 2
  • Yingjie Qiao
    • 2
  • Yingjin Song
    • 1
  • Kehan Song
    • 3
  • Chuan Liu
    • 4
  1. 1.School of ScienceHarbin University of CommerceHarbinP. R. China
  2. 2.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinP. R. China
  3. 3.Department of ChemistryHarbin UniversityHarbinP. R. China
  4. 4.Department of ChemistryQiqihar UniversityQiqiharP. R. China

Personalised recommendations