Skip to main content
Log in

Interference Adsorption Mechanisms of Dimethoate, Metalaxyl, Atrazine, Malathion and Prometryn in a Sediment System Containing Coexisting Pesticides/Heavy Metals Based on Fractional Factor Design(Resolution V) Assisted by 2D-QSAR

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The mechanisms of adsorption of pesticides(dimethoate, metalaxyl, atrazine, malathion and prometryn) and heavy metals(Cu, Cd, Pb, Zn and Ni) coexisting in sediments, with pesticides as target pollutants, and the influence of their main effects and double-order interaction effects were studied using the experimental design module in the Minitab software package with a 210‒3 fractional factorial design method at resolution V. The main, double-order interaction, synergistic and antagonistic effect values of pollutant concentrations influencing the adsorption of pesticides were set as dependent variables, while various quantum chemical parameters of pesticides were set as independent variables, and two-dimensional quantitative structure activity relationship(2D-QSAR) models were established by stepwise regression to reveal the adsorption mechanisms of pesticides in a composite contamination system. The main effects of pollutants concentration played the primary role in the adsorption of dimethoate and malathion(the rates of contributions were 53.54% and 56.46%, respectively), while double-order interaction effects were primarily responsible for metalaxyl, atrazine and prometryn adsorption(the rates of contributions were 79.05%, 60.21% and 57.89%, respectively) in the pesticide/heavy metals coexisting sediment system. The synergistic effects of the main effects and double-order interaction effects of pollutants concentration(synergistic effects) played a leading role in adsorption of malathion and prometryn(the rates of contributions were 70.61% and 69.61%, respectively), while antagonistic effects of the main effects and double-order interaction effects of pollutants(antagonistic effects) played a dominant role in the adsorption of dimethoate, metalaxyl and atrazine(the rates of contributions were 58.82%, 56.89% and 58.24%, respectively). Moreover, the correlation coefficient value(R2) ranged from 0.986 to 0.999(>0.8783) in the 2D-QSAR model, while the standard deviation(SD) ranged from 0.006 to 0.066 and the F test values were 22.684―199.544, indicating the model has good predictive ability and fit. The 2D-QSAR model revealed a significant correlation(P=0.05) between the main effects of pollutants concentrations on pesticides adsorption(main effect values) and the most positive hydrogen atomic charge(\(q_{H^+}\)), the highest occupied molecular orbital energy(EHOMO) and the dipole moment(μ). Furthermore, double-order interaction effect values of pollutant concentrations influenced the adsorption of pesticides(double-order interaction effect values), and the most positive atomic charge(q+), \(q_{H^+}\), and the lowest occupied molecular orbital energy(ELUMO) were significantly correlated. The qH+, ELUMO and μ of pesticides were found to be significant factors promoting pesticides adsorption, while the q+ and ELUMO of pesticides were significant inhibiting factors(P=0.05). Overall, this study provides a theoretical basis for further realization of combined pollution control of pesticide pollutants in complex environmental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao J. P., Maguhn J., Spitzauer P., Kettrup., Water Res. 1998, 32(7), 2089

    Article  CAS  Google Scholar 

  2. Biradar D. P., Rayburn A. L., J. Environ. Qual., 1995, 24(6), 1222

    Article  CAS  Google Scholar 

  3. Tao Q., Tang H., Chemosphere 2004, 56(1), 31

    Article  CAS  PubMed  Google Scholar 

  4. Huang Y., Li Z. Y., Zhao B. S., J. Environ. Sci. Manag., 2009, 34(4), 20

    Google Scholar 

  5. Li Q. Q., Zhu Y. W., Xiong M. Y., Duan J., Wu L. J., Li C. Z., Min S. G., Spectrosc. Spect. Anal. 2010, 30(12), 3395

    CAS  Google Scholar 

  6. Shi D. R., Zhang L. D., Ren L. P., Yu J. L., Tian X., J. Agro-Environ. Sci., 2006, 25(4), 988

    CAS  Google Scholar 

  7. Tao Q. H., Tang H. X., Acta Sci. Circum. 2004, 24(4), 696

    CAS  Google Scholar 

  8. Evgenidou E., Bizani E., Christophoridis C., Fytianos K., Chemos-phere 2007, 68(10), 1877

    Article  CAS  Google Scholar 

  9. Wang L., Zhang C., Zhong M. J., Qian P., Chem. J. Chinese Univer-sities, 2015, 36(7), 1358

    Google Scholar 

  10. Li Y., Wang A., Gao Q., Wang X. L., Chem. Res. Chinese Universi-ties 2009, 25(1), 31

    Google Scholar 

  11. Jantunen A. P. K., Tuikka A., Akkanen J., Kukkonen J. V. K., Ecotox. Environ. Safe. 2008, 71(3), 860

    Article  CAS  Google Scholar 

  12. Wang X., Wang C. R., Zhang L. L., Wu X. S., Wang D. Y., Cai X. D., J. Southwest Univ. Sci. Technol., 2014, 29(3), 40

    Google Scholar 

  13. Gorzerino C., Quemeneur A., Hillenweck A., Baradat M., Delous G., Ollitrault M., Azam D., Caquet T., Lagadic L., Ecotox. Environ. Safe. 2009, 72(3), 802

    Article  CAS  Google Scholar 

  14. Fei Y., Yan X. L., Liao X. Y., Li Y. H., Lin L. Y., Shan T. Y., Acta Sci. Circum. 2016, 36(11), 4164

    CAS  Google Scholar 

  15. Li H., Zhang H. L., Dong Y. B., Tan Y., Chen S., Liu L. L., Res. En-viron. Sci. 2016, 29(8), 1154

    Google Scholar 

  16. Fan P., Yang J. C., Deng S. H., Jiang H. M., Zhang J. F., Li L. L., Shen F., J. Agro-Environ. Sci., 2011, 30(10), 1925

    Google Scholar 

  17. Wang X. H., Yang H. J., Yan B. H., Tang M. Z., Luo L., Hunan Agric. Sci. 2011, 1, 85

    Google Scholar 

  18. Weng H. X., Zhu Y. M., Qin Y. C., Chen J. Y., Chen X. H., J. Asian Earth Sci., 2008, 31, 522

    Article  Google Scholar 

  19. Gao J. P., Maguhn J., Spitzauer P., Kettrup A., Water Res. 1998, 32(5), 1662

    Article  CAS  Google Scholar 

  20. Cheng W. W., Kang C. L., Wang T. T., Li Y. M., Chem. Res. Chinese Universities. 2011, 27(3), 402

    Google Scholar 

  21. Li Y. Q., Jiang H., Lv C. W., Fan M. D., Wang W., Zhang R. Q., Xie Z. L., Wang J. H., Yu B., En H., Ding T., Environ. Sci. 2016, 37(3), 1008

    CAS  Google Scholar 

  22. Zhang Y. L., Shi X. C., Zhang R. L., Sichuan Environ. 2002, 21(2), 13

    CAS  Google Scholar 

  23. Qian Z., Sun J., Tie B. Q., Mao X. Q., Zhan L. Z., Chin. J. Eco-Agric., 2006, 14(3), 135

    Google Scholar 

  24. Liu B. G., Liu J. W., Li J. Q., Geng S., Mo H. Z., Liang G. Z., Chem. J. Chinese Universities, 2017, 38(1), 41

    CAS  Google Scholar 

  25. Wang M. Y., Ma Y., Wang H. Y., Cao G., Li Z. M., Chem. J. Chinese Universities, 2016, 37(9), 1636

    Google Scholar 

  26. Chen Y., Cai X. Y., Jiang L., Li Y., Ecotox. Environ. Safe. 2015, 124, 202

    Article  CAS  Google Scholar 

  27. Dong D. M., Nelson Y. M., Lion L. W., Water Res. 2000, 34(2), 427

    Article  CAS  Google Scholar 

  28. Ma R. C., Gao Z. T., Chen B. C., Zhao W. J., Wang M., Li Y., Sci. Techn. Eng. 2004, 20(14), 144

    Google Scholar 

  29. Gu W. W., Cheng B. C., Li Y., Pol. J. Environ. Stud., 2017, 26(1), 47

    Article  CAS  Google Scholar 

  30. Bailey G. W., White J. L., J. Agr. Food Chem., 1964, 12(4), 324

    Article  CAS  Google Scholar 

  31. Senesi N., Sci. Total Environ. 1992, 123, 63

    Article  PubMed  Google Scholar 

  32. Hayes M. H. B., Pick M. E., Toms B. A., et al., Residue Rev. 1975, 57(1), 25

    Google Scholar 

  33. Anderson R. B., J. Am. Chem. Soc., 1956, 68, 686

    Article  Google Scholar 

  34. Yang C. W., Wang Q. Q., Liu W. P., Environ. Sci. 2002, 21(4), 94

    CAS  Google Scholar 

  35. Long J. J., Zhang M. Q., Zhang X., Comput. Appl. Chem. 2005, 22(10), 883

    CAS  Google Scholar 

  36. Luo Y. F., Huang J., Yu G., Comput. Appl. Chem. 2009, 26(6), 773

    CAS  Google Scholar 

  37. Pei H. P., Xu G. J., J. Zhejiang Univ-Sci., 2003, 30(3), 310

    CAS  Google Scholar 

  38. Jiang L., Wen J. Y., Zeng Y. L., Li Y., Asian J. Chem., 2014, 26(22), 575

    Article  CAS  Google Scholar 

  39. Yao S. W., Lopes V. H. C., Fernández F, Garcia-Mera X., Morales M., Rodriguez-Borges J. E., Cordeiro M. N. D. S., Bioorg. Med. Chem. 2003, 11(23), 4999

    Article  CAS  PubMed  Google Scholar 

  40. Li G. D., Peng F., Chen L. M., Chen J. C., Zheng K. C., Chem. Res. Appl. 2015, 2, 113

    Google Scholar 

  41. Kaliszan R., J. Chromatogr. A, 1993, 656(1/2), 417

    Article  CAS  Google Scholar 

  42. Tao Q. H., Tang H. X., Chemosphere 2004, 56, 31

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Additional information

Supported by the Fundamental Research Funds for the Central Universities in 2013, China(No.JB2013146) and the Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period, China(No.2008BAC43B01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Q., Li, M. et al. Interference Adsorption Mechanisms of Dimethoate, Metalaxyl, Atrazine, Malathion and Prometryn in a Sediment System Containing Coexisting Pesticides/Heavy Metals Based on Fractional Factor Design(Resolution V) Assisted by 2D-QSAR. Chem. Res. Chin. Univ. 34, 397–407 (2018). https://doi.org/10.1007/s40242-018-7253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7253-8

Keywords

Navigation