Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 279–284 | Cite as

Improving Catalytic Performance of Burkholderiacepacia Lipase by Chemical Modification with Functional Ionic Liquids

  • Chao Xu
  • Xuhan Yin
  • Chuan Zhang
  • Hongyue Chen
  • He Huang
  • Yi Hu
Article

Abstract

Various imidazolium and choline-based functional ionic liquids(ILs) comprising different cations and anions were grafted onto Burkholderiacepacia lipase(BCL) through surface amino acids coupling. The catalytic ac-tivity, thermostability, organic solvent tolerance and adaptability to temperature and pH changes of the modified BCL were then evaluated in olive oil hydrolysis reaction. The results showed that different combinations of cations and anions in ILs had important influence on the catalytic performance of the modified lipases. BCL modified with IL [Choline][H2PO4] was the most improved lipase, in which increases by 1.2 folds in relative activity, 2.5 folds in typi-cal proton solvent(10% methanol, volume fraction), and 1.4 folds in thermostability(after incubation at 70 °C for 2 h) were achieved in relative toits native form. BCL modified with [HOOCEPEG350IM][BF4] had higher optimal tempe- rature and pH, and better thermosability compared with the native and other modified BCLs. The conformational changes of BCLs were also confirmed by fluorescence spectroscopy and circular dichroism spectroscopy.

Keywords

Burkholderiacepacia lipase Chemical modification Ionic liquid Catalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Reetz M. T., J. Am. Chem. Soc., 2013, 135(34), 12480CrossRefGoogle Scholar
  2. [2]
    Hudlicky T., Chem. Rev., 2011, 111(7), 3995CrossRefGoogle Scholar
  3. [3]
    Herbst D., Peper S., Niemeyer B., J. Biotechnol., 2012, 162(4), 398CrossRefGoogle Scholar
  4. [4]
    Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., Lutz S., Moore J. C., Robins K., Nature, 2012, 485(7397), 185CrossRefGoogle Scholar
  5. [5]
    Strohmeier G. A., Pichler H., May O., Gruber-Khadjawi M., Chem. Rev., 2011, 111(7), 4141CrossRefGoogle Scholar
  6. [6]
    Houde A., Kademi A., Leblanc D., Appl. Biochem. Biotechnol., 2004, 118(1–3), 155CrossRefGoogle Scholar
  7. [7]
    Díaz-Rodríguez A., Davis B. G., Curr. Opin. Chem. Biol., 2011, 15(2), 211CrossRefGoogle Scholar
  8. [8]
    Cowan D. A., Fernandezlafuente R., Enzyme Microb. Technol., 2011, 49(4), 326CrossRefGoogle Scholar
  9. [9]
    Chalker J. M., Bernardes G. J. L., Lin Y. A., Davis B. G., Chem-Asian J., 2009, 40(30), 630CrossRefGoogle Scholar
  10. [10]
    Ke C., Li X., Huang S., Xu L., Yan Y., RSC Adv., 2014, 4(101), 57810CrossRefGoogle Scholar
  11. [11]
    Rodrigues R. C., Berenguer-Murcia A., Fernandez-Lafuente R., Adv. Synth. Catal., 2011, 353(13), 2216CrossRefGoogle Scholar
  12. [12]
    Barbosa O., Ruiz M., Ortiz C., Fernández M., Torres R., Fernan-dez-Lafuente R., Process Biochem., 2012, 47(5), 867CrossRefGoogle Scholar
  13. [13]
    Serap E., Azmi T., Prep. Biochem. Biotechnol., 2005, 35(3), 191CrossRefGoogle Scholar
  14. [14]
    van Rantwijk F., Sheldon R. A., Chem. Rev., 2007, 107(6), 2757CrossRefGoogle Scholar
  15. [15]
    Potdar M. K., Kelso G. F., Lachlan S., Chunfang Z., Hearn M. T. W., Molecules, 2015, 20(9), 16788CrossRefGoogle Scholar
  16. [16]
    Tavares A. P. M., Rodríguez O., Macedo E. A., Ionic Liquids-New Aspects for the Future, InTech, Croatia, 2013, 537Google Scholar
  17. [17]
    Jia R., Hu Y., Liu L., Jiang L., Zou B., Huang H., ACS Catal., 2013, 3(9), 1976CrossRefGoogle Scholar
  18. [18]
    Hu Y., Yang J., Jia R., Ding Y., Li S., Huang H., Bioprocess. Biosyst. Eng., 2014, 37(8), 1617CrossRefGoogle Scholar
  19. [19]
    Li X., Zhang C., Li S., Huang H., Hu Y., Ind. Eng. Chem. Res., 2015, 54(33), 8072CrossRefGoogle Scholar
  20. [20]
    Jia R., Hu Y., Liu L., Jiang L., Huang H., Org. Biomol. Chem., 2013, 11(41), 7192CrossRefGoogle Scholar
  21. [21]
    Sasso F., Natalello A., Castoldi S., Lotti M., Santambrogio C., Gran-dori R., Biotechnol. J., 2016, 11(7), 954CrossRefGoogle Scholar
  22. [22]
    Salum T. F. C., Baron A. M., Zago E., Turra V., Baratti J., Mitchell D. A., Krieger N., Biocatal. Biotransform, 2008, 26(3), 197CrossRefGoogle Scholar
  23. [23]
    Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M., Klenk D. C., Anal. Biochem., 1985, 150(1), 76CrossRefGoogle Scholar
  24. [24]
    Xue Y., Wu C. Y., Branford-White C. J., Ning X., Nie H. L., Zhu L. M., J. Mol. Catal. B: Enzym., 2010, 63(3), 188CrossRefGoogle Scholar
  25. [25]
    Hofmeister F., Naunyn-Schmiedeberg’s Arch. Pharmacol., 1888, 25(1), 1CrossRefGoogle Scholar
  26. [26]
    Zhao H., Olubajo O., Song Z., Sims A. L., Person T. E., Lawal R. A., Holley L. A., Bioorg. Chem., 2006, 34(1), 15CrossRefGoogle Scholar
  27. [27]
    Lo Nostro P., Ninham B. W., Chem. Rev., 2012, 112(4), 2286CrossRefGoogle Scholar
  28. [28]
    Ninham B. W., Duignan T. T., Parsons D. F., Curr. Opin. Colloid Interface Sci., 2011, 16(6), 612CrossRefGoogle Scholar
  29. [29]
    Zhao H., J. Chem. Technol. Biotechnol., 2006, 81(6), 877CrossRefGoogle Scholar
  30. [30]
    Zhao H., Olubajo O., Song Z., Sims A. L., Person T. E., Lawal R. A., Holley L. A., Bioorg. Chem., 2006, 34(1), 15CrossRefGoogle Scholar
  31. [31]
    Montalbetti C. A., Falque V., Tetrahedron, 2005, 61(46), 10827CrossRefGoogle Scholar
  32. [32]
    Teng L. R., Hao F., Zhang Y. Y., Chem. Res. Chinese Universities, 2006, 22(1), 61CrossRefGoogle Scholar
  33. [33]
    Zhao H., J. Chem. Technol. Biotechnol., 2010, 85(7), 891CrossRefGoogle Scholar
  34. [34]
    Yang Z., J. Biotechnol., 2009, 144(1), 12CrossRefGoogle Scholar
  35. [35]
    Collins K. D., Biophys. J., 1997, 72(1), 65CrossRefGoogle Scholar
  36. [36]
    Lai J. Q., Li Z., Lü Y. H., Yang Z., Green Chem., 2011, 13(7), 1860CrossRefGoogle Scholar
  37. [37]
    Liu Y., Chen D., Yan Y., Peng C., Xu L., Bioresour. Technol., 2011, 102(22), 10414CrossRefGoogle Scholar
  38. [38]
    Nordwald E. M., Kaar J. L., Biotechnol. Bioeng., 2013, 110(9), 2352CrossRefGoogle Scholar
  39. [39]
    Persson M., Bornscheuer U. T., J. Mol. Catal. B: Enzym., 2003, 22(1), 21CrossRefGoogle Scholar
  40. [40]
    Ladokhin A. S., Jayasinghe S., White S. H., Anal. Biochem., 2000, 285(2), 235CrossRefGoogle Scholar
  41. [41]
    Ghisaidoobe A. B., Chung S. J., Int. J. Mol. Sci., 2014, 15(12), 22518CrossRefGoogle Scholar
  42. [42]
    Lozano P., Diego T., Iborra J. L., Eur. J. Biochem., 1997, 248(1), 80CrossRefGoogle Scholar
  43. [43]
    Liu J. Z., Wang M., BMC Biotech., 2007, 7(1), 23CrossRefGoogle Scholar
  44. [44]
    da Silva Freitas D., Abrahão-Neto J., Int. J. Pharm., 2010, 392(1), 111CrossRefGoogle Scholar
  45. [45]
    Rahman R. N., Tejo B. A., Basri M., Rahman M. B. A., Khan F., Zain S. M., Siahaan T. J., Salleh A. B., Appl. Biochem. Biotechnol., 2004, 118(1–3), 11CrossRefGoogle Scholar
  46. [46]
    De Diego T., Lozano P., Gmouh S., Vaultier M., Iborra J. L., Bioma-cromolecules, 2005, 6(3), 1457CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Xu
    • 1
  • Xuhan Yin
    • 1
  • Chuan Zhang
    • 1
  • Hongyue Chen
    • 1
  • He Huang
    • 1
  • Yi Hu
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical SciencesNanjing Tech UniversityNanjingP. R. China

Personalised recommendations