Effect of Phosphoric Acid on HZSM-5 Catalysts for Prins Condensation to Isoprene from Isobutylene and Formaldehyde

  • Xue Yu
  • Yuewei Zhang
  • Bing Liu
  • Huiyong Ma
  • Yan Wang
  • Qiang Bao
  • Zhenlü Wang
Article

Abstract

A series of HZSM-5 zeolites modified with different amounts of phosphoric acid(P/HZSM-5) was pre-pared. The physicochemical features of the P/HZSM-5 catalysts were characterized via X-ray diffraction(XRD), N2 adsorption-desorption, NH3-temperature programmed desorption(NH3-TPD) and Fourier tranform infrared(FTIR) spectra of the adsorbed pyridine, and the performances of the catalysts for Prins condensation to isoprene from iso-butylene and formaldehyde were investigated. The maximum isobutene conversion and isoprene selectivity were 10.3% and 94.6% on the HZSM-5 catalyst with a Si/Al molar ratio of 600 using 5%(mass fraction) phosphoric acid. The phosphoric acid modification not only modulated the amount of acidic sites but also regulated the acid type. An appropriate amount of weak Lewis and Brönsted acid sites served as the active sites for the condensation of isobutene with formaldehyde, and the strong acid sites could cause side reactions and coke deposition.

Keywords

Isobutylene Isoprene Formaldehyde HZSM-5 catalyst Phosphoric acid modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Taalman R. D. F. M., Toxicology. 1996, 113(1―3), 242CrossRefGoogle Scholar
  2. [2]
    Hamamoto Y., Mitsutani A., Method of Producing Conjugated Diole-fins, US23230062A, 1965Google Scholar
  3. [3]
    Mitsntani A., Process for the Manufacture of Isoprene and Isobutene, US43573165A, 1966Google Scholar
  4. [4]
    Krzywicki A., Wilanowicz T., React. Kinet. Catal. Lett. 1979, 11(4), 399CrossRefGoogle Scholar
  5. [5]
    Dang Z., Ding S., J. Mol. Catal., 1987, 3(1), 146Google Scholar
  6. [6]
    Dumitriu E., Gongescu D., Hulea V., Heterogeneous Catalysis and Fine Chemicals III 1993, 78, 669Google Scholar
  7. [7]
    Sushkevich V. L., Ordomsky V. V., Ivanova I. I., Appl. Catal. A 2012, 441, 21CrossRefGoogle Scholar
  8. [8]
    Dang Z., Gu J., Yu L., Zhang C., React. Kinet. Mech. Cat. 1991, 43(2), 495CrossRefGoogle Scholar
  9. [9]
    Ivanova I., Sushkevich V. L., Kolyagin Y. G., Angew. Chem. 2013, 125(49), 13199CrossRefGoogle Scholar
  10. [10]
    Dumitriu E., On D. T., Kaliaguine S., J. Catal., 1997, 170(1), 150CrossRefGoogle Scholar
  11. [11]
    Dumitriu E., Hulea V., Fechete I., Appl. Catal. A 1999, 181(1), 15CrossRefGoogle Scholar
  12. [12]
    Lü J., Zhou S., Ma K., Meng M., Tian Y., Chin. J. Catal., 2015, 36, 1295CrossRefGoogle Scholar
  13. [13]
    Yu X., Zhu W. C., Zhai S. B., Bao Q., Cheng D. D., React. Kinet. Mech. Cat. 2016, 117(2), 761CrossRefGoogle Scholar
  14. [14]
    Shen Z., Liu J., Xu H.., Yue Y., Appl. Catal. A 2009, 356, 148CrossRefGoogle Scholar
  15. [15]
    Yu X., Zhai S. B., Zhu W. C., Gao S., J. Chem. Sci., 2014, 126(4), 1013CrossRefGoogle Scholar
  16. [16]
    Zhu X., Li X., Jia M., Liu G., Zhang W., Appl. Catal. A, 2005, 282(1/2), 155CrossRefGoogle Scholar
  17. [17]
    Zhang R. Z., Wen S. B., Xing P., Chem. J. Chinese Universities, 2017, 38(1), 126Google Scholar
  18. [18]
    Epelde E., Santos J. I., Florian P., Appl. Catal. A 2015, 505, 105CrossRefGoogle Scholar
  19. [19]
    Ding J., Wang M., Peng L., Appl. Catal. A 2015, 503(48), 147CrossRefGoogle Scholar
  20. [20]
    Pan F., Lu X. C., Zhu Q. S., J. Mater. Chem. A, 2014, 2(1), 20667CrossRefGoogle Scholar
  21. [21]
    Zhao G., Teng J., Xie Z., J. Catal., 2007, 248(1), 29CrossRefGoogle Scholar
  22. [22]
    Göhlich M., Reschetilowski W., Paasch S., Micropor. Mesopor. Ma-ter., 2011, 142(3/4), 178CrossRefGoogle Scholar
  23. [23]
    Kaeding W. W., Butter S. A., J. Catal., 1980, 61(1), 155CrossRefGoogle Scholar
  24. [24]
    Vinek H., Rumplmayr G., Lercher J. A., J. Catal., 1989, 115(2) 291CrossRefGoogle Scholar
  25. [25]
    Blasco T., Corma A., Martínez-Triguero J., J. Catal., 2006, 237(2), 267CrossRefGoogle Scholar
  26. [26]
    Zhang D., Wang R., Yang X., Catal. Lett. 2008, 124(2), 384CrossRefGoogle Scholar
  27. [27]
    Jiang G., Zhang L., Zhao Z., Appl. Catal. A 2008, 340(2), 176CrossRefGoogle Scholar
  28. [28]
    Gou M. L., Wang R., Qiao Q., Appl. Catal. A 2014, 482, 1CrossRefGoogle Scholar
  29. [29]
    Jaumain D., Su B. L., J. Mol. Catal. A: Chem., 2003, 197(1/2), 263CrossRefGoogle Scholar
  30. [30]
    Tao L., Chen L., Yin S. F., Appl. Catal. A, 2009, 367(1/2), 99CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xue Yu
    • 1
    • 2
  • Yuewei Zhang
    • 2
  • Bing Liu
    • 3
  • Huiyong Ma
    • 4
  • Yan Wang
    • 5
  • Qiang Bao
    • 1
  • Zhenlü Wang
    • 1
  1. 1.Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.Jilin Institute of Chemical TechnologyJilinP. R. China
  3. 3.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunP. R. China
  4. 4.Department of Medicinal ChemistryUniversity of KansasLawrenceUSA
  5. 5.College of Chemistry and Biology of Beihua UniversityJilinP. R. China

Personalised recommendations