Skip to main content

Advertisement

Log in

Effect of Ni Precipitation Method on CO Methanation over Ni/TiO2 Catalysts

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A Ni/TiO2(TBT) catalyst was prepared through in situ precipitation, using tetrabutyl titanate(TBT) as the TiO2 precursor, and was studied in CO methanation. A Ni catalyst supported on commercial TiO2 was also prepared through post precipitation and studied to compare the influence of Ni precipitation conditions on the catalyst’s performance. To gain insight on their structure and physicochemical properties, the catalysts were characterized with N2-adsorption, X-ray diffraction, transimission electron microscopy, H2 temperature programmed reduction and temperature programmed desorption. The results showed that the in situ precipitation method was beneficial to the dispersion of Ni and the formation of more active sites on the Ni/TiO2 catalyst. In addition, the density of the metal- support boundary and its interaction with the active component were also increased. These characteristics of Ni/TiO2(TBT) led to a lower light-off temperature and a suppression of Ni sintering during CO methanation. As a consequence, the Ni/TiO2(TBT) exhibited better catalytic behavior, with a CO conversion of 99.4% and CH4 selectiv-ity of 90.4% under the following conditions: p=1 MPa, t=320 °C, n(H2)/n(CO)=3, gas hour space velocity (GHSV)=2×104 mL·g–1·h–1. The life test results of the two catalysts showed that Ni/TiO2(TBT) was more stable and the catalytic activity remained at its initial level after being used for 30 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Y. L., Mcgregor J., Sederman A. J., Dennis J. S., Chem. Eng. Sci., 2016, 152, 754

    Article  Google Scholar 

  2. Bian Z., Meng X., Tao M., Lv Y. H., Xin Z., Fuel, 2016, 179, 193

    Article  CAS  Google Scholar 

  3. Li Y., Zhang Q., Chai R., Zhao G., Cao F., Ye L., Yong L., Appl. Catal. A: Gen., 2016, 510, 216

    Article  CAS  Google Scholar 

  4. Zhang J., Zhong X., Xin M., Miao T., Fuel, 2013, 109(7), 693

    Article  CAS  Google Scholar 

  5. Wang S. R., Wang H. X., Yin Q. Q., Zhu L. Z., Yin S., New J. Chem., 2014, 38(9), 4471

    Article  CAS  Google Scholar 

  6. Zhu L., Yin S., Yin Q., Wang H., Wang S., Energy Sci. Eng., 2015, 3(2), 126

    Article  CAS  Google Scholar 

  7. Djinovic P., Galletti C., Specchia V., Top. Catal., 2011, 54(16), 1042

    Article  CAS  Google Scholar 

  8. Kimura M., Miyao T., Komori S., Chen A., Higashiyama K., Yama-shita H., Watanabe M., Appl. Catal. A: Gen., 2010, 379(1), 182

    Article  CAS  Google Scholar 

  9. Panagiotopoulou P., Kondarides D. I., Verykios X. E., Catal. Today, 2012, 181(1), 138

    Article  CAS  Google Scholar 

  10. Galletti C., Specchia S., Saracco G., Specchia V., Chem. Eng. Sci., 2010, 65(1), 590

    Article  CAS  Google Scholar 

  11. Panagiotopoulou P., Kondarides D. I., Verykios X. E., Appl. Catal. B: Environ., 2009, 88(3/4), 470

    Article  CAS  Google Scholar 

  12. Wang G., Gao Y., Wang W., Huang W., Chinese J. Chem. Phy., 2012, 25(4), 475

    Article  CAS  Google Scholar 

  13. Wang W., Wang S., Ma X., Gong J., Chem. Soc. Rev., 2011, 40(7), 3703

    Article  CAS  Google Scholar 

  14. Kowalczyk Z., Stolecki K., Raróg-Pilecka W., Miskiewicz E., Wilczkowska E., Karpinski Z., Appl. Catal. A: Gen., 2008, 342(1/2), 35

    Article  CAS  Google Scholar 

  15. Ji K. M., Meng F. H., Gao Y., Li Z., Chem. J. Chinese Universities, 2016, 37(1), 134

    CAS  Google Scholar 

  16. Czekaj I., Loviat F., Raimondi F., Wambach J., Biollaz S., Wokaun A., Appl. Catal. A: Gen., 2007, 329(10), 68

    Article  CAS  Google Scholar 

  17. Hu D., Gao J., Ping Y., Jia L., Gunawan P., Zhong Z., Xu G., Gu F., Su F., Ind. Eng. Chem. Res., 2012, 51(13), 4875

    Article  CAS  Google Scholar 

  18. Tada S., Shimizu T., Kameyama H., Haneda T., Kikuchi R., Int. J. Hydrogen Energy, 2012, 37(7), 5527

    Article  CAS  Google Scholar 

  19. Aziz M. A. A., Jalil A. A., Triwahyono S., Mukti R. R., Taufiq-Yap Y. H., Sazegar M. R., Appl. Catal. B: Environ., 2014, 147(7), 359

    Article  CAS  Google Scholar 

  20. Struis R. P. W. J., Schildhauer T. J., Czekaj I., Janousch M., Biollaz S. M. A., Ludwig C., Appl. Catal. A: Gen., 2009, 362(1/2), 121

    Article  CAS  Google Scholar 

  21. Andersson M. P., Abild-Pedersen F., Remediakis I. N., Bligaard T., Jones G., Engbæk J., Lytken O., Horch S., Nielsen J. H., Sehested J., J. Catal., 2008, 255(1), 6

    Article  CAS  Google Scholar 

  22. Das R., Gupta A., Kumar D., Oh S. H., Pennycook S. J., Hebard A. F., J. Phys-Condens Mat., 2008, 20(38), 385213

    Article  CAS  Google Scholar 

  23. Guo C., Wu Y., Qin H., Zhang J., Fuel Process. Technol., 2014, 124, 61

    Article  CAS  Google Scholar 

  24. Erdöhelyi A., Pásztor M., Solymosi F., J. Catal., 1986, 98(1), 166

    Article  Google Scholar 

  25. Urasaki K., Tanpo Y., Nagashima Y., Kikuchi R., Satokawa S., Appl. Catal. A: Gen., 2013, 452, 174

    Article  CAS  Google Scholar 

  26. Shinde V. M., Madras G., AICHE J., 2014, 60(3), 1027

    Article  CAS  Google Scholar 

  27. Lin X., Lin L., Huang K., Chen X., Dai W., Fu X., Appl. Catal. B: Environ., 2015, 168/169, 416

    Article  Google Scholar 

  28. Liang H. O., Bai J., Yu D. D., Zhang Q. Y., Li C. P., Chem. J. Chinese Universities, 2017, 38(6), 947

    CAS  Google Scholar 

  29. Yan X., Liu Y., Zhao B., Wang Z., Wang Y., Liu C. J., Int. J. Hydro-gen Energy, 2013, 38(5), 2283

    Article  CAS  Google Scholar 

  30. Ho S. W., Chu C. Y., Chen S. G., J. Catal., 1998, 178(1), 34

    Article  CAS  Google Scholar 

  31. Seo J. G., Min H. Y., Song I. K., J. Molecul. Catal. A: Chem., 2007, 268(1/2), 9

    Article  CAS  Google Scholar 

  32. Liu J., Li C., Wang F., He S., Chen H., Zhao Y., Wei M., Evans D. G., Duan X., Catal. Sci. Technol., 2013, 3(10), 2627

    Article  CAS  Google Scholar 

  33. Loc L. C., Tuan N. M., Dung N. K., Phuc N. H. H., Thoang H. S., J. Clin. Microbiol., 2008, 29(3), 573

    Google Scholar 

  34. Jia C., Gao J., Li J., Gu F., Xu G., Zhong Z., Su F., Catal. Sci. Tech-nol., 2013, 3(2), 490

    Article  CAS  Google Scholar 

  35. Guo H., Zhao X., Huilin Guo A., Zhao Q., Langmuir, 2008, 19(23), 9799

    Article  Google Scholar 

  36. Wang Y., Ren J., Wang Y., Zhang F., Liu X., Guo Y., Lu G., J. Phy. Chem. C, 2014, 112(39), 15293

    Article  Google Scholar 

  37. Zhu Y., Zhang S., Ye Y., Zhang X., Wang L., Zhu W., Cheng F., Tao F., ACS Catal., 2012, 2(2), 2403

    Article  CAS  Google Scholar 

  38. Cunha E. V., Faccin F., Moro C. C., De Castro S. C., Química Nova, 2002, 25(3), 392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingjun Zhu or Shurong Wang.

Additional information

Supported by the National Natural Science Foundation of China(No.51661145011), the National Science and Technology Supporting Plan, China(No.2015BAD15B06), the Foundation of the State Key Laboratory of Clean Energy Utilization, China(No. ZJUCEU2016001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Zhu, L., Liu, Y. et al. Effect of Ni Precipitation Method on CO Methanation over Ni/TiO2 Catalysts. Chem. Res. Chin. Univ. 34, 296–301 (2018). https://doi.org/10.1007/s40242-018-7205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7205-3

Keywords

Navigation