Advertisement

In Silico Pharmacology

, 5:16 | Cite as

Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics

  • Giuseppe Deganutti
  • Andrei Zhukov
  • Francesca Deflorian
  • Stephanie Federico
  • Giampiero Spalluto
  • Robert M. Cooke
  • Stefano Moro
  • Jonathan S. Mason
  • Andrea Bortolato
Original Research

Abstract

Ligand–protein binding kinetic rates are growing in importance as parameters to consider in drug discovery and lead optimization. In this study we analysed using surface plasmon resonance (SPR) the transition state (TS) properties of a set of six adenosine A2A receptor inhibitors, belonging to both the xanthine and the triazolo-triazine scaffolds. SPR highlighted interesting differences among the ligands in the enthalpic and entropic components of the TS energy barriers for the binding and unbinding events. To better understand at a molecular level these differences, we developed suMetaD, a novel molecular dynamics (MD)—based approach combining supervised MD and metadynamics. This method allows simulation of the ligand unbinding and binding events. It also provides the system conformation corresponding to the highest energy barrier the ligand is required to overcome to reach the final state. For the six ligands evaluated in this study their TS thermodynamic properties were linked in particular to the role of water molecules in solvating/desolvating the pocket and the small molecules. suMetaD identified kinetic bottleneck conformations near the bound state position or in the vestibule area. In the first case the barrier is mainly enthalpic, requiring the breaking of strong interactions with the protein. In the vestibule TS location the kinetic bottleneck is instead mainly of entropic nature, linked to the solvent behaviour.

Keywords

Metadynamics Supervised molecular dynamics Ligand binding kinetics SPR Biacore Molecular dynamics 

Supplementary material

40203_2017_37_MOESM1_ESM.docx (565 kb)
Supplementary material 1 (DOCX 565 kb)

References

  1. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603.  https://doi.org/10.1103/PhysRevLett.100.020603 CrossRefPubMedGoogle Scholar
  2. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics: metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1:826–843.  https://doi.org/10.1002/wcms.31 CrossRefGoogle Scholar
  3. Borea PA, Varani K, Gessi S, Merighi S, Dal Piaz A, Gilli P et al (2004) Receptor binding thermodynamics at the neuronal nicotinic receptor. Curr Top Med Chem 4:361–368CrossRefPubMedGoogle Scholar
  4. Bortolato A, Deflorian F, Weiss DR, Mason JS (2015) Decoding the role of water dynamics in ligand-Protein unbinding: CRF 1 R as a test case. J Chem Inf Model 55:1857–1866.  https://doi.org/10.1021/acs.jcim.5b00440 CrossRefPubMedGoogle Scholar
  5. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:54103.  https://doi.org/10.1063/1.2432340 CrossRefGoogle Scholar
  6. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive Gaussians. J Chem Theory Comput 8:2247–2254.  https://doi.org/10.1021/ct3002464 CrossRefPubMedGoogle Scholar
  7. Bui JM, Henchman RH, McCammon JA (2003) The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys J 85:2267–2272.  https://doi.org/10.1016/S0006-3495(03)74651-7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101.  https://doi.org/10.1063/1.2408420 CrossRefGoogle Scholar
  9. Carpenter B, Nehmé R, Warne T, Leslie AGW, Tate CG (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107.  https://doi.org/10.1038/nature18966 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E, Langmead CJ et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903.  https://doi.org/10.1021/jm201376w CrossRefPubMedPubMedCentralGoogle Scholar
  11. Copeland RA (2015) The drug–target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95.  https://doi.org/10.1038/nrd.2015.18 CrossRefPubMedGoogle Scholar
  12. Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739.  https://doi.org/10.1038/nrd2082 CrossRefPubMedGoogle Scholar
  13. Cuzzolin A, Sturlese M, Deganutti G, Salmaso V, Sabbadin D, Ciancetta A et al (2016) Deciphering the complexity of ligand-protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J Chem Inf Model 56:687–705.  https://doi.org/10.1021/acs.jcim.5b00702 CrossRefPubMedGoogle Scholar
  14. Dahl G, Akerud T (2013) Pharmacokinetics and the drug–target residence time concept. Drug Discov Today 18:697–707.  https://doi.org/10.1016/j.drudis.2013.02.010 CrossRefPubMedGoogle Scholar
  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092.  https://doi.org/10.1063/1.464397 CrossRefGoogle Scholar
  16. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293.  https://doi.org/10.1016/j.str.2011.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci 108:13118–13123.  https://doi.org/10.1073/pnas.1104614108 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P et al (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:144.  https://doi.org/10.3390/ijms17020144 CrossRefPubMedCentralGoogle Scholar
  19. Federico S, Paoletta S, Cheong SL, Pastorin G, Cacciari B, Stragliotto S et al (2011) Synthesis and biological evaluation of a new series of 1,2,4-triazolo[1,5-a]-1,3,5-triazines as human A2A adenosine receptor antagonists with improved water solubility. J Med Chem 54:877–889.  https://doi.org/10.1021/jm101349u CrossRefPubMedPubMedCentralGoogle Scholar
  20. Federico S, Ciancetta A, Porta N, Redenti S, Pastorin G, Cacciari B et al (2016) 5,7-Disubstituted-[1,2,4]triazolo[1,5- a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. Eur J Med Chem 108:529–541.  https://doi.org/10.1016/j.ejmech.2015.12.019 CrossRefPubMedGoogle Scholar
  21. Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM et al (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195CrossRefPubMedGoogle Scholar
  22. Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329.  https://doi.org/10.1038/nature05959 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring 1 method and assessment of docking accuracy. J Med Chem 47:1739–1749.  https://doi.org/10.1021/jm0306430 CrossRefPubMedGoogle Scholar
  24. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067.  https://doi.org/10.1063/1.1472510 CrossRefGoogle Scholar
  25. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127:2600–2607.  https://doi.org/10.1021/ja0445950 CrossRefPubMedGoogle Scholar
  26. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81.  https://doi.org/10.1038/nrm3933 CrossRefPubMedGoogle Scholar
  27. Guo D, Pan AC, Dror RO, Mocking T, Liu R, Heitman LH et al (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491.  https://doi.org/10.1124/mol.115.102657 CrossRefPubMedGoogle Scholar
  28. Guo D, Heitman LH, IJzerman AP (2017) Kinetic aspects of the interaction between ligand and G protein-coupled receptor: the case of the adenosine receptors. Chem Rev 117:38–66.  https://doi.org/10.1021/acs.chemrev.6b00025 CrossRefPubMedGoogle Scholar
  29. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring 2 enrichment factors in database screening. J Med Chem 47:1750–1759.  https://doi.org/10.1021/jm030644s CrossRefPubMedGoogle Scholar
  30. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929.  https://doi.org/10.1063/1.1755656 CrossRefPubMedGoogle Scholar
  31. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature.  https://doi.org/10.1038/nature10750 PubMedPubMedCentralGoogle Scholar
  32. Hothersall JD, Brown AJ, Dale I, Rawlins P (2016) Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov Today 21:90–96.  https://doi.org/10.1016/j.drudis.2015.07.015 CrossRefPubMedGoogle Scholar
  33. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation: equilibrium binding assays. Br J Pharmacol 161:1219–1237.  https://doi.org/10.1111/j.1476-5381.2009.00604.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230CrossRefPubMedGoogle Scholar
  35. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR et al (2008) The 26 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217.  https://doi.org/10.1126/science.1164772 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264.  https://doi.org/10.1038/nrd1983 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55:351–367.  https://doi.org/10.1002/prot.10613 CrossRefGoogle Scholar
  38. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges AM1-BCC model: II parameterization and validation. J Comput Chem 23:1623–1641.  https://doi.org/10.1002/jcc.10128 CrossRefPubMedGoogle Scholar
  39. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179.  https://doi.org/10.1021/jp212503e CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kenakin T, Christopoulos A (2012) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216.  https://doi.org/10.1038/nrd3954 CrossRefPubMedGoogle Scholar
  41. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566.  https://doi.org/10.1073/pnas.202427399 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109:6714–6721.  https://doi.org/10.1021/jp045424k CrossRefPubMedGoogle Scholar
  43. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525.  https://doi.org/10.1038/nature10136 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lebon G, Edwards PC, Leslie AGW, Tate CG (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915.  https://doi.org/10.1124/mol.114.097360 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Li W (2005) Possible pathway(s) of testosterone egress from the active site of cytochrome P450 2B1: a steered molecular dynamics simulation. Drug Metab Dispos 33:910–919.  https://doi.org/10.1124/dmd.105.004200 CrossRefPubMedGoogle Scholar
  46. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins.  https://doi.org/10.1002/prot.22711 PubMedPubMedCentralGoogle Scholar
  47. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236.  https://doi.org/10.1126/science.1219218 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Luitz MP, Zacharias M (2014) Protein-ligand docking using Hamiltonian replica exchange simulations with soft core potentials. J Chem Inf Model 54:1669–1675.  https://doi.org/10.1021/ci500296f CrossRefPubMedGoogle Scholar
  49. Marchi M, Ballone P (1999) Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J Chem Phys 110:3697–3702.  https://doi.org/10.1063/1.478259 CrossRefGoogle Scholar
  50. Mollica L, Decherchi S, Zia SR, Gaspari R, Cavalli A, Rocchia W (2015) Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5:11539.  https://doi.org/10.1038/srep11539 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mollica L, Theret I, Antoine M, Perron-Sierra F, Charton Y, Fourquez J-M et al (2016) Molecular dynamics simulations and kinetic measurements to estimate and predict protein-ligand residence times. J Med Chem 59:7167–7176.  https://doi.org/10.1021/acs.jmedchem.6b00632 CrossRefPubMedGoogle Scholar
  52. Nguyen ATN, Baltos J-A, Thomas T, Nguyen TD, Munoz LL, Gregory KJ et al (2016) Extracellular loop 2 of the adenosine A1 receptor has a key role in orthosteric ligand affinity and agonist efficacy. Mol Pharmacol 90:703–714.  https://doi.org/10.1124/mol.116.105007 CrossRefPubMedGoogle Scholar
  53. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug–receptor binding kinetics. Drug Discov Today 18:667–673.  https://doi.org/10.1016/j.drudis.2013.02.007 CrossRefPubMedGoogle Scholar
  54. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190.  https://doi.org/10.1063/1.328693 CrossRefGoogle Scholar
  55. Patel JS, Berteotti A, Ronsisvalle S, Rocchia W, Cavalli A (2014) Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model 54:470–480.  https://doi.org/10.1021/ci4003574 CrossRefPubMedGoogle Scholar
  56. Pierce LCT, Salomon-Ferrer R, de Augusto Oliveira F, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8:2997–3002.  https://doi.org/10.1021/ct300284c CrossRefPubMedPubMedCentralGoogle Scholar
  57. Polosa R, Blackburn MR (2009) Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol Sci 30:528–535.  https://doi.org/10.1016/j.tips.2009.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Radić Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P (1997) Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase distinctions between active center ligands and fasciculin. J Biol Chem 272:23265–23277CrossRefPubMedGoogle Scholar
  59. Rich RL, Myszka DG (2009) Grading the commercial optical biosensor literature—Class of 2008: “The Mighty Binders”. J Mol Recognit 23:1–64.  https://doi.org/10.1002/jmr.1004 CrossRefGoogle Scholar
  60. Rich RL, Errey J, Marshall F, Myszka DG (2011) Biacore analysis with stabilized G-protein-coupled receptors. Anal Biochem 409:267–272.  https://doi.org/10.1016/j.ab.2010.10.008 CrossRefPubMedGoogle Scholar
  61. Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci 18:338–344CrossRefPubMedGoogle Scholar
  62. Rivera-Oliver M, Díaz-Ríos M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101:1–9.  https://doi.org/10.1016/j.lfs.2014.01.083 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Roos H, Karlsson R, Nilshans H, Persson A (1998) Thermodynamic analysis of protein interactions with biosensor technology. J Mol Recognit 11:204–210.  https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<204:AID-JMR424>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  64. Sabbadin D, Moro S (2014) Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR–ligand recognition pathway in a nanosecond time scale. J Chem Inf Model 54:372–376.  https://doi.org/10.1021/ci400766b CrossRefPubMedGoogle Scholar
  65. Sahlan M, Zako T, Tai PT, Ohtaki A, Noguchi K, Maeda M et al (2010) Thermodynamic characterization of the Interaction between prefoldin and group II chaperonin. J Mol Biol 399:628–636.  https://doi.org/10.1016/j.jmb.2010.04.046 CrossRefPubMedGoogle Scholar
  66. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J Am Chem Soc 133:18903–18910.  https://doi.org/10.1021/ja207494u CrossRefPubMedGoogle Scholar
  67. Segala E, Guo D, Cheng RKY, Bortolato A, Deflorian F, Doré AS et al (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479.  https://doi.org/10.1021/acs.jmedchem.6b00653 CrossRefPubMedGoogle Scholar
  68. Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 85:1317–1329.  https://doi.org/10.1016/j.bcp.2013.03.005 CrossRefPubMedGoogle Scholar
  69. Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA et al (2009) Millisecond-scale molecular dynamics simulations on Anton. In: proc. conf. high perform. Comput Netw Storage Anal SC 09 no. c: 1–11Google Scholar
  70. Shepherd CA, Hopkins AL, Navratilova I (2014) Fragment screening by SPR and advanced application to GPCRs. Prog Biophys Mol Biol 116:113–123.  https://doi.org/10.1016/j.pbiomolbio.2014.09.008 CrossRefPubMedGoogle Scholar
  71. Sinko W, Miao Y, de Oliveira CAF, McCammon JA (2013) Population based reweighting of scaled molecular dynamics. J Phys Chem B 117:12759–12768.  https://doi.org/10.1021/jp401587e CrossRefPubMedPubMedCentralGoogle Scholar
  72. Stanley N, Pardo L, De Fabritiis G (2016) The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci Rep 6:22639.  https://doi.org/10.1038/srep22639 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. In: Wilson CN, Mustafa SJ (eds) Adenosine receptors in health and disease, vol 193. Springer, Berlin, pp 535–587.  https://doi.org/10.1007/978-3-540-89615-9_17 CrossRefGoogle Scholar
  74. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199.  https://doi.org/10.1016/0021-9991(77)90121-8 CrossRefGoogle Scholar
  75. Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 385:337–372.  https://doi.org/10.1007/s00210-012-0734-2 CrossRefPubMedGoogle Scholar
  76. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174.  https://doi.org/10.1002/jcc.20035 CrossRefPubMedGoogle Scholar
  77. Wang K, Chodera JD, Yang Y, Shirts MR (2013) Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. J Comput Aided Mol Des 27:989–1007.  https://doi.org/10.1007/s10822-013-9689-8 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174.  https://doi.org/10.1002/jcc.21507 CrossRefPubMedGoogle Scholar
  79. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327.  https://doi.org/10.1126/science.1202793 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yu R, Tabassum N, Jiang T (2016) Investigation of α-conotoxin unbinding using umbrella sampling. Bioorg Med Chem Lett 26:1296–1300.  https://doi.org/10.1016/j.bmcl.2016.01.013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Giuseppe Deganutti
    • 1
  • Andrei Zhukov
    • 2
  • Francesca Deflorian
    • 2
  • Stephanie Federico
    • 3
  • Giampiero Spalluto
    • 3
  • Robert M. Cooke
    • 2
  • Stefano Moro
    • 1
  • Jonathan S. Mason
    • 2
  • Andrea Bortolato
    • 2
  1. 1.Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPaduaItaly
  2. 2.Heptares Therapeutics Ltd.Welwyn Garden CityUK
  3. 3.Department of Chemical and Pharmaceutical SciencesUniversity of TriesteTriesteItaly

Personalised recommendations