Skip to main content
Log in

Novel dihydropyrimidine derivatives as potential HDAC inhibitors: in silico study

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Dihydropyrimidine derivatives possess many biological activities due to presence of pyrimidine ring structure in various nucleic acids, vitamins, coenzymes, uric acid and their derivatives. They have possessed broad spectrum actions like antibacterial, antifungal, antiviral, anticancer and antihypertensive etc. Before synthesis of compounds, it is good to predict biological activity using in silico methods. Here, we have selected some of N (3af) and O (4af) mannich bases of dihydro pyrimidine derivatives emphasized on histone deacetylase 4 (HDAC-4) inhibitions activity. We have used the different software tools like Lipinski’s rule of five; pass online; osiris property explorer and docking studies to predict anti cancer activity. All the selected compounds exhibited potential drug like molecule with anti cancer activity. Among all compound the substitution with methoxy group (3c) exhibited more drugs like property and substation with hydrogens (4a) showed high anti neoplastic activity; whereas substitution with dichloro groups (4e) showed more drug docking scores. These were compared with standard drugs tamoxifen and 5-flourouracil. The approach of predicting anticancer activity using in silico method may be more useful to select and synthesis novel compounds in research as well as in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadi AH, Ibrahim TM, Abouzid KM, Lehmann J, Tinsley HN, Gary BD et al (2009) Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg Med Chem 17:5974–5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A et al (1991) Dihydropyrimidine calcium channel blockers. 3. 3-carbamoyl-4-aryl-1, 2, 3, 4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34:806–811

    Article  CAS  PubMed  Google Scholar 

  • Bahekar SS, Shinde DB (2003) Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1, 6-dihydropyrimidine-5-yl]-acetic acid derivatives. Acta Pharm 53:223–229

    CAS  PubMed  Google Scholar 

  • Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS, Bywater RP (2004) Recognition of privileged structures by G-protein coupled receptors. J Med Chem 47:888–899

    Article  CAS  PubMed  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  PubMed  Google Scholar 

  • DeSimone RW, Currie KS, Mitchell SA, Darrow JW, Pippin DA (2004) Privileged structures: applications in drug discovery. Comb Chem High Throughput Screen 7:473–494

    Article  CAS  PubMed  Google Scholar 

  • Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Sutradhar S, Sachan K (2010) Computer-aided drug design-a new approach in drug design and discovery. Computer 4:025

    Google Scholar 

  • El-Sayed WA, Nassar IF, Adel A-H (2009) C-Furyl glycosides, II: synthesis and antimicrobial evaluation of C-furyl glycosides bearing pyrazolines, isoxazolines, and 5, 6-dihydropyrimidine-2 (1H)-thiones. Monatshefte für Chem Chem Mon 140:365–370

    Article  CAS  Google Scholar 

  • Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV et al (2014) Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem Heterocycl Compd 50:444–457

    Article  CAS  Google Scholar 

  • Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH et al (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajduk PJ, Bures M, Praestgaard J, Fesik SW (2000) Privileged molecules for protein binding identified from NMR-based screening. J Med Chem 43:3443–3447

    Article  CAS  PubMed  Google Scholar 

  • Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarachari RK, Peta S, Surur AS, Mekonnen YT (2016) Synthesis, characterization and in silico biological activity of some 2-(N, N-dimethyl guanidinyl)-4,6-diaryl pyrimidines. J Pharm Bioallied Sci 8:181–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  • Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286:971–974

    Article  CAS  PubMed  Google Scholar 

  • Molecular Properties Prediction (2017) OSIRIS property explorer. http://www.organic-chemistry.org/prog/peo/. Accessed 14 Apr 2017

  • Nakashima S, Yamamoto K, Arai Y, Ikeda Y (2013) Impact of physicochemical profiling for rational approach on drug discovery. Chem Pharm Bull 61:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswamy VK, Nayak SK, Pillay M, Prasanna R, Coovadia YM, Odhav B (2013) Synthesis and antitubercular activity of 2-(substituted phenyl/benzyl-amino)-6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-3, 6-dihydropyrimidin-1-ium chlorides. Chem Biol Drug Des 81:219–227

    Article  CAS  PubMed  Google Scholar 

  • Narayanaswamy VK, Gleiser RM, Chalannavar RK, Odhav B (2014) Antimosquito properties of 2-substituted phenyl/benzylamino-6-(4-chlorophenyl)-5-methoxycarbonyl-4-methyl-3,6-dihydropyrim idin–ium chlorides against Anopheles arabiensis. Med Chem 10:211–219

    Article  CAS  PubMed  Google Scholar 

  • Nofal ZM, Fahmy HH, Zarea ES, El-Eraky W (2011) Synthesis of new pyrimidine derivatives with evaluation of their anti-inflammatory and analgesic activities. Acta Pol Pharm 68:507–517

    CAS  PubMed  Google Scholar 

  • Ou-Yang SS, Lu JY, Kong XQ, Liang ZJ, Luo C, Jiang H (2012) Computational drug discovery. Acta Pharmacol Sin 33:1131–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu M, Siddiqui N (2016) A review on biological importance of pyrimidines in the new era. Int J Pharm Pharm Sci 2016:14

    Google Scholar 

  • Sangameswaran L, Fales HM, Friedrich P, De Blas AL (1986) Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc Natl Acad Sci USA 83:9236–9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah T, Gupte A, Patel M, Chaudhari V, Patel H, Patel V (2010) Synthesis and in vitro study of biological activity of heterocyclic N-Mannich bases of 3,4-dihydro-pyrimidine-2 (1H)-thiones. Indian J Chem Sect B Org Incl Med 49:578

    Google Scholar 

  • Taj T, Kamble RR, Gireesh TM, Hunnur RK, Margankop SB (2011) One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities. Eur J Med Chem 46:4366–4373

    Article  CAS  PubMed  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Fang X, Lu Y, Wang S (2004) The PDBbind database: collection of binding affinities for protein–ligand complexes with known three-dimensional structures. J Med Chem 47:2977–2980

    Article  CAS  PubMed  Google Scholar 

  • Weigelt J (2010) Structural genomics-impact on biomedicine and drug discovery. Exp Cell Res 316:1332–1338

    Article  CAS  PubMed  Google Scholar 

  • Yusof I, Segall MD (2013) Considering the impact drug-like properties have on the chance of success. Drug Discov Today 18:659–666

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Zhao Q, Liao J, Hu H, Yu S, Chai X et al (2012) New triazole derivatives as antifungal agents: synthesis via click reaction, in vitro evaluation and molecular docking studies. Bioorg Med Chem Lett 22:2959–2962

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanna Ajumeera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thipparapu, G., Ajumeera, R. & Venkatesan, V. Novel dihydropyrimidine derivatives as potential HDAC inhibitors: in silico study. In Silico Pharmacol. 5, 10 (2017). https://doi.org/10.1007/s40203-017-0030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-017-0030-4

Keywords

Navigation