Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO



The purpose of this study was to develop antimicrobial bioplastics based on Poly Lactic Acid (PLA) with the addition of chitosan-ZnO, and chitosan-TiO2 to improve antimicrobial properties.


For the preparation of the bioplastics, PLA with chitosan-ZnO or chitosan-TiO2 were used. The antimicrobial activity, mechanical and thermal properties, and water vapor permeability of bioplastics were evaluated.


PLA-chitosan-ZnO indicated a robust antimicrobial activity against bacteria such as Salmonella typhi, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, yeast such as Candida albicans, and fungus Aspergillus niger. No formation of new functional groups in PLA-chitosan-ZnO composites. In comparison to other PLA-based bioplastics, this bioplastic has medium tensile strength, tensile modulus, and elongation percentages with low barrier ability to water vapor. Chitosan-ZnO itself has a greater tensile strength compared to chitosan-TiO2. These two compounds undergo 2 stages of decomposition in a temperature range of 43 °C to 265 °C. The addition of PLA into chitosan-ZnO or chitosan TiO2 causes the bioplastics decomposed in a single stage. It also increases the decomposition temperature of bioplastic. However, compared to chitosan-ZnO or TiO2, the PLA-chitosan-ZnO or TiO2 bioplastics tend to produce a fragile composite indicating by decrease in their tensile strength.


In general, the addition of chitosan-ZnO into in PLA-based bioplastic produces better antimicrobial properties compared to TiO2.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19(12):634–43.

    CAS  Article  Google Scholar 

  2. 2.

    Badan Pusat Statistik, “Statistik Lingkungan Hidup Indonesia (KLHK) 2018 (2018) Badan pus. Stat Indonesia1–43.

  3. 3.

    Lunt J. Large-scale production, properties, and commercial applications of polylactic acid polymers. Polym Degrad Stab. 1998;59(1–3):145–52.

    CAS  Article  Google Scholar 

  4. 4.

    Bonilla J, Fortunati E, Vargas M, Chiralt A, Kenny JM. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng. 2013;119(2):236–43.

    CAS  Article  Google Scholar 

  5. 5.

    Lee SY, Park SJ. TiO2 photocatalyst for water treatment applications. J Ind Eng Chem. 2013;19(6):1761–9.

    CAS  Article  Google Scholar 

  6. 6.

    Siddiqi KS, ur Rahman A, Tajuddin, and Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13, 141.

  7. 7.

    Huang Q, Jiao Z, Li M, Qiu D, Liu K, Shi H. Preparation, characterization, antifungal activity, and aechanism of chitosan/TiO2 hybrid film against bipolaris maydis. J Appl Polym Sci. 2012;128:2623–9.

    Article  Google Scholar 

  8. 8.

    Park J, Bauer S, Mark KVD, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007;7(6):1686–169.

    CAS  Article  Google Scholar 

  9. 9.

    Evans P, Sheel DW. Photoactive and antibacterial TiO2 thin films on stainless steel. Surface & Coatings Technology. 2007;201:9319–24.

    CAS  Article  Google Scholar 

  10. 10.

    Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym. 2017a;169:101–7.

    CAS  Article  Google Scholar 

  11. 11.

    Ghozali M, Triwulandari E, Meliana Y, Fahmiati S, Fatriasari W, Laksana RPB, et al. Thermal properties of polylactic acid/zinc oxide biocomposite films. AIP Conf Proc. 2018;2024.

  12. 12.

    Zhang H, Hortal M, Jorda-Beneyto M, Rosa E, Lara-Lledo M, Lorente I. ZnO-PLA nanocomposite coated paper for antimicrobial packaging application. LWT-Food Science and Technology. 2017b;78:250–7.

    CAS  Article  Google Scholar 

  13. 13.

    Zulfiana D, Karimah A, Anita SH, Masruchin N, Wijaya K, Suryanegara L, et al. Antimicrobial Imperata cylindrica paper coated with anionic nanocellulose crosslinked with cationic ions. Int J Biol Macromol. 2020;164:892–901.

    CAS  Article  Google Scholar 

  14. 14.

    Yousefzadeh S, Matin AR, Ahmadi E, Sabeti Z, Alimohammadi M, Aslani H, et al. Response surface methodology as a tool for modeling and optimization of bacillus subtilis spores inactivation by UV/ nano-Fe0 process for safe water production. Food Chem Toxicol. 2018;114:334–45.

    CAS  Article  Google Scholar 

  15. 15.

    Claus D, Berkeley RCW. Manual of systematic bacteriology :genus Bacillus. Baltimore: Williams and Wilkins Co.; 1986.

    Google Scholar 

  16. 16.

    Matin AR, Yousefzadeh S, Ahmadi E, Mahvi A, Alimohammadi M, Aslani H, et al. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/ H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization. Food Chem Toxicol. 2018;116:129–37.

    CAS  Article  Google Scholar 

  17. 17.

    Sabeti Z, Alimohammadi M, Yousefzadeh S, Aslani H, Ghani M, Nabizadeh R. Application of response surface methodology for modeling and optimization of Bacillus subtilis spores inactivation by the UV/persulfate process. Water Science & Technology: Water Supply. 2017;17:342–51.

    CAS  Article  Google Scholar 

  18. 18.

    Kloss WE, Bannerman TL. Update on clinical significance of coagulase-negative Staphylococci. Clin Microbiol Rev. 1994;1:177–40.

    Google Scholar 

  19. 19.

    Stewart CM (2003) Staphylococcus aureus and Staphylococcal enterotoxins, Ed. 6th, Australian Institute of Food Science and Technology (NSW branch), Sydney.

  20. 20.

    Troeman DPR, Hout DV, Kluytmans JAJW. Antimicrobial approaches in the prevention of Staphylococcus aureus infections: a review. J Antimicrob Chemother. 2019;74:281–94.

    CAS  Article  Google Scholar 

  21. 21.

    Nataro JP, Kaper JB. Diarrheagenic Eschericia coli. Clin MicrobiolRev. 1998;11:142–201.

    CAS  Article  Google Scholar 

  22. 22.

    Jafari A, Aslani MM, Bouzari S. Eschericia coli : a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iran JMicrobiol. 2012;3(4):102–17.

    Google Scholar 

  23. 23.

    Zhang X, Jeza VT, Pan Q. Salmonella typhi : from a human pathogen to a vaccine vector. Cell Mol Immunol. 2008;2(5):91–7.

    Article  Google Scholar 

  24. 24.

    Nurjayadi M, Pertiwi YP, Islami N, Azizah N, Efrianti UR, Saamia V, et al. Detection of the Salmonella typhi bacteria in contaminated egg using realtime PCR to develop rapid detection of food poisoning bacteria. Biocatalysis and Agricultural Biotechnology. 2019;20:101214.

    Article  Google Scholar 

  25. 25.

    Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet. 2010;7(42):590–8.

    Article  Google Scholar 

  26. 26.

    Nadeem SG, Shafiq A, Hakim ST, Anjum Y, Kazm SU. Effect of growth media, pH and temperature on yeast to Hyphal transition in Candida albicans, Open J. Med Microbiol. 2013;3:185–92.

    Google Scholar 

  27. 27.

    Sharma R. Pathogenecity of Aspergillus niger in plants. CJM. 2012;1:47–51.

    Google Scholar 

  28. 28.

    Passamani FRF, Hernandes T, Lopes NA, Bastos SC, Santiago WD, Gracas M. Effect of temperature, water acidity, and pH on growth and production of Ochratoxin a by Aspergillus carbonarius from Brazillian grapes. J Food Prot. 2014;11(77):1947–52.

    Article  Google Scholar 

  29. 29.

    Zhang X, Xiao G, Wang Y, Zhao Y, Su H, Tan T. Preparation of chitosan-TiO2composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr Polym. 2017;169:101–7.

    CAS  Article  Google Scholar 

  30. 30.

    ASTM D 882-75b Tensile Properties of Thin Plastic Sheeting.pdf. .

  31. 31.

    ASTM E96–95 Standard Test Methods for Water Vapor Transmission of Materials.

  32. 32.

    Mousavi Khaneghah A, Hashemi SMB, and Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1–19, 1.

  33. 33.

    Tayel AA, Moussa S, Opwis K, Knittel D, Schollmeyer E, Nickisch-Hartfiel A. Inhibition of microbial pathogens by fungal chitosan. Int J Bio Macromol. 2010;47(1):10–4.

    CAS  Article  Google Scholar 

  34. 34.

    Wang Y, Wu Y, Yang H, Xue X, Liu Z. Doping TiO2 with boron or/and cerium elements: effects on photocatalytic antimicrobial activity. Vacuum. 2016;131:58–64.

    CAS  Article  Google Scholar 

  35. 35.

    Mihindukulasuriya SDF, Lim LT. Nanotechnology development in food packaging: a review. Trends Food Sci Technol. 2014;40(2):149–67.

    CAS  Article  Google Scholar 

  36. 36.

    Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. The contribution of zinc ions to the antimicrobial activity of zinc oxide.Colloids. Surfaces A Physicochem Eng Asp. 2014;457(1):263–74.

    CAS  Article  Google Scholar 

  37. 37.

    Li LH, Deng JC, Deng HR, Liu ZL, Xin L. Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res. 2010;345(8):994–8.

    CAS  Article  Google Scholar 

  38. 38.

    Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. Fifth ed. Stamford (USA): Cengage Learning; 2015.

  39. 39.

    Badi MY, Azari A, Esrafili A, Ahmadi E, Gholami M. Performance evaluation of magnetized multiwall carbon nanotubes by Iron oxide nanoparticles in removing fluoride from aqueous solution. J Mazandaran Univ Med Sci. 2015;25(124):128–42.

    Google Scholar 

  40. 40.

    Haldorai Y, Shim J. Novel chitosan-TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Polimer Composites. 2013:327–33.

  41. 41.

    Mofokeng JP, Luyt AS, Tabi T, Kovacs J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Material. 2011;25(8):927–48.

    Article  Google Scholar 

  42. 42.

    Cazón P, Velazquez G, Ramírez JA, Vázquez M. Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll. 2017;68:136–48.

    Article  Google Scholar 

  43. 43.

    Kodal, Mehmet, Abdulmounem Alchekh Wis, and Guralp Ozkoc. 2018. The mechanical, thermal and morphological properties of γ-Irradiated PLA/TAIC and PLA/OvPOSS.”

  44. 44.

    Li W, Zhang C, Chi H, Li L, Lan T, Han P, et al. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules. 2017;22(1170).

Download references

Author information



Corresponding authors

Correspondence to Lisman Suryanegara or Widya Fatriasari.

Ethics declarations

Conflict of interest

The authors of this article declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suryanegara, L., Fatriasari, W., Zulfiana, D. et al. Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. J Environ Health Sci Engineer (2021).

Download citation


  • Antimicrobial properties
  • Bioplastic
  • Poly lactic acid (PLA)
  • Chitosan
  • TiO2
  • ZnO