Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm

Abstract

Purpose

Dust pollution is currently one of the most serious environmental problems faced by open-pit mines. Compared with underground mining, open-pit mining has many dust sources, and a wide area of influence and complicated changes in meteorological conditions can result in great variations in dust concentration. Therefore, the prediction of dust concentrations in open-pit mines requires research and is of great significance for reducing environmental pollution and personal health hazards.

Methods

This study is based on monitoring of the concentration of total suspended particulate (TSP) in the Anjialing open-pit coal mine in Pingshuo. This paper proposes a hybrid model based on a long short-term memory (LSTM) network and the attention mechanism (LSTM-Attention) and applies it to the prediction of TSP concentration. The LSTM model reflects the historical process of an input time series, and the attention mechanism extracts the inherent characteristics of the input parameters to assign weights based on the importance of the influencing factors. The autoregressive integrated moving average (ARIMA) and LSTM models are also used to predict the TSP concentration. Finally, several statistical measures of error are used to evaluate the accuracy of the model and perform a sensitivity analysis.

Results

It was found that, in general, the TSP concentration was highest in the period 08:00–09:00 and lowest in the period 15:00–16:00. In addition to the influence of meteorological parameters and normal operations, the reason for this trend is the presence of an inversion layer above the open-pit mine. The results show that, compared with the ARIMA and LSTM models, the LSTM-Attention model is more stable and has a prediction accuracy that is 5.6% and 3.0% greater, respectively.

Conclusion

This model can be applied to the prediction of dust concentrations in open-pit mines and provide guidance on when to carry out dust-suppression work. It has expansibility and is potentially valuable for application in a wide range of areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Liu D, Li L. Application study of comprehensive forecasting model based on entropy weighting method on trend of PM2. 5 concentration in Guangzhou, China[J]. Int J Environ Res Public Health. 2015;12(6):7085–99. https://doi.org/10.3390/ijerph120607085.

    CAS  Article  Google Scholar 

  2. 2.

    Csavina J, Field J, Félix O, Corral-Avitia AY, Sáez AE, Betterton EA. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates[J]. Sci Total Environ. 2014;487:82–90. https://doi.org/10.1016/j.scitotenv.2014.03.138.

    CAS  Article  Google Scholar 

  3. 3.

    Liang X, Zou T, Guo B, et al. Assessing Beijing's PM2. 5 pollution: severity, weather impact, APEC and winter heating[J]. Proc Royal Soc A Math Phys Eng Sci. 2015;471(2182):20150257. https://doi.org/10.1098/rspa.2015.0257.

    Article  Google Scholar 

  4. 4.

    Afrad M S I, Monir M B, Haque M E, et al. Impact of industrial effluent on water, soil and Rice production in Bangladesh: a case of Turag River Bank[J]. J Environ Health Sci Eng. 2020;18(2):825–834. https://doi.org/10.1007/s40201-020-00506-8.

  5. 5.

    Paithankar A, Chatterjee S, Goodfellow R, Asad MWA. Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation[J]. Res Policy. 2020;66:101634.

    Article  Google Scholar 

  6. 6.

    Gonzalo Morera de la Vall Gonzalez. Dust production in mining. Suppression measures in quarry blasting[D]. College of mining and energy engineering: Department of Geology and mining engineering. 2018.

  7. 7.

    Zhang Y, Zhang Y, Liu B, Meng X. Prediction of the length of service at the onset of coal workers’ pneumoconiosis based on neural network[J]. Arch Environ Occup Health. 2020;75(4):242–50. https://doi.org/10.1080/19338244.2019.1644278.

    CAS  Article  Google Scholar 

  8. 8.

    Tripathy D P, Dash T R, Badu A, et al. Assessment And Modelling Of Dust Concentration In An Opencast Coal Mine In India[J]. Global Nest Journal. 2015;17(4):825–834.

  9. 9.

    Bray CD, Battye W, Aneja VP, Tong D, Lee P, Tang Y, et al. Evaluating ammonia (NH3) predictions in the NOAA National air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign[J]. Atmos Environ. 2017;163:65–76. https://doi.org/10.1016/j.atmosenv.2017.05.032.

    CAS  Article  Google Scholar 

  10. 10.

    Zhou G, Xu J, Xie Y, Chang L, Gao W, Gu Y, et al. Numerical air quality forecasting over eastern China: an operational application of WRF-Chem[J]. Atmos Environ. 2017;153:94–108. https://doi.org/10.1016/j.atmosenv.2017.01.020.

    CAS  Article  Google Scholar 

  11. 11.

    Aljerf L. Reduction of gas emission resulting from thermal ceramic manufacturing processes through development of industrial conditions[J]. Sci J King Faisal Univ. 2016;17(1):1–10.

    Google Scholar 

  12. 12.

    de Gennaro G, Trizio L, Di Gilio A, et al. Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean[J]. Sci Total Environ. 2013;463:875–83. https://doi.org/10.1016/j.scitotenv.2013.06.093.

    CAS  Article  Google Scholar 

  13. 13.

    Li X, Zhang C, Zhang B, Liu K. A comparative time series analysis and modeling of aerosols in the contiguous United States and China[J]. Sci Total Environ. 2019;690:799–811. https://doi.org/10.1016/j.scitotenv.2019.07.072.

    CAS  Article  Google Scholar 

  14. 14.

    Yi L, Mengfan T, Kun Y, Yu Z, Xiaolu Z, Miao Z, et al. Research on PM2. 5 estimation and prediction method and changing characteristics analysis under long temporal and large spatial scale-a case study in China typical regions[J]. Sci Total Environ. 2019;696:133983. https://doi.org/10.1016/j.scitotenv.2019.133983.

    CAS  Article  Google Scholar 

  15. 15.

    Yuan W, Wang K, Bo X, Tang L, Wu J. A novel multi-factor & multi-scale method for PM2. 5 concentration forecasting[J]. Environ Pollut. 2019;255:113187. https://doi.org/10.1016/j.envpol.2019.113187.

    CAS  Article  Google Scholar 

  16. 16.

    Kukkonen J, Partanen L, Karppinen A, et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in Central Helsinki[J]. Atmos Environ. 2003;37(32):4539–50. https://doi.org/10.1016/S1352-2310(03)00583-1.

    CAS  Article  Google Scholar 

  17. 17.

    Wang X, Wang B. Research on prediction of environmental aerosol and PM2. 5 based on artificial neural network[J]. Neural Comput & Applic. 2019;31(12):8217–27. https://doi.org/10.1007/s00521-018-3861-y.

    Article  Google Scholar 

  18. 18.

    Choubin B, Abdolshahnejad M, Moradi E, Querol X, Mosavi A, Shamshirband S, et al. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain[J]. Sci Total Environ. 2020;701:134474. https://doi.org/10.1016/j.scitotenv.2019.134474.

    CAS  Article  Google Scholar 

  19. 19.

    Bagnall A, Flynn M, Large J, et al. Is rotation forest the best classifier for problems with continuous features?[J]. arXiv preprint arXiv:1809.06705, 2018.

  20. 20.

    Sutton CD. Classification and regression trees, bagging, and boosting[J]. Handbook Stat. 2005;24:303–29. https://doi.org/10.1016/S0169-7161(04)24011-1.

    Article  Google Scholar 

  21. 21.

    Zhang H, Zhang S, Wang P, Qin Y, Wang H. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan China. J Air Waste Manage Assoc. 2017;67(7):776–88. https://doi.org/10.1080/10962247.2017.1292968.

    CAS  Article  Google Scholar 

  22. 22.

    Bui X, Lee C, Nguyen H, et al. Estimating PM10 Concentration from Drilling Operations in Open-Pit Mines Using an Assembly of SVR and PSO[J]. Appl Sci. 2019;9(14). https://doi.org/10.3390/app9142806.

  23. 23.

    Li J, Li X, Wang K, et al. Atmospheric PM2.5 Concentration Prediction Based on Time Series and Interactive Multiple Model Approach[J]. Adv Meteorol. 2019: 1–11. https://doi.org/10.1155/2019/1279565.

  24. 24.

    Ali Shah SA, Aziz W, Ahmed Nadeem MS, Almaraashi M, Shim SO, Habeebullah TM. A novel phase space reconstruction-(PSR-) based predictive algorithm to forecast atmospheric particulate matter concentration[J]. Sci Program. 2019;2019:1–12.

    Google Scholar 

  25. 25.

    Ahn J, Shin D, Kim K, et al. Indoor air quality analysis using deep learning with sensor data[J]. Sensors. 2017;17(11):2476. https://doi.org/10.3390/s1711247626.

    Article  Google Scholar 

  26. 26.

    Yu Y, Hu C, Si X, Zheng J, Zhang J. Averaged bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset[J]. Neurocomputing. 2020;402:134–47. https://doi.org/10.1016/j.neucom.2020.03.041.

    Article  Google Scholar 

  27. 27.

    Li M, Lu F, Zhang H, Chen J. Predicting future locations of moving objects with deep fuzzy-LSTM networks[J]. Transportmetrica. 2018;16(1):119–36. https://doi.org/10.1080/23249935.2018.1552334.

    Article  Google Scholar 

  28. 28.

    Wu D, Jiang Z, Xie X, Wei X, Yu W, Li R. LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT[J]. IEEE Trans Industr Inform. 2019;16(8):5244–53. https://doi.org/10.1109/TII.2019.2952917.

    Article  Google Scholar 

  29. 29.

    Pak U, Ma J, Ryu U, Ryom K, Juhyok U, Pak K, et al. Deep learning-based PM2. 5 prediction considering the spatiotemporal correlations: a case study of Beijing, China[J]. Sci Total Environ. 2020;699:133561. https://doi.org/10.1016/j.scitotenv.2019.07.367.

    CAS  Article  Google Scholar 

  30. 30.

    Lin W, Lo S, Young H, et al. Evaluation of deep learning neural networks for surface roughness prediction using vibration signal analysis[J]. Appl Sci. 2019;9(7). https://doi.org/10.3390/app9071462.

  31. 31.

    Kim HS, Park I, Song CH, Lee K, Yun JW, Kim HK, et al. Development of a daily PM10 and PM2. 5 prediction system using a deep long short-term memory neural network model[J]. Atmos Chem Phys. 2019;19:12935–51. https://doi.org/10.5194/acp-19-12935-2019.

    CAS  Article  Google Scholar 

  32. 32.

    Zhang T, Song S, Li S, et al. Research on gas concentration prediction models based on LSTM multidimensional time series[J]. Energies. 2019;12(1):161. https://doi.org/10.3390/en12010161.

    Article  Google Scholar 

  33. 33.

    Kim S, Lee J M, Lee J, et al. Deep-dust: Predicting concentrations of fine dust in Seoul using LSTM[J]. arXiv preprint arXiv:1901.10106. 2019.

  34. 34.

    Ding Y, Zhu Y, Feng J, Zhang P, Cheng Z. Interpretable Spatio-temporal attention LSTM model for flood forecasting[J]. Neurocomputing. 2020;403:348–59. https://doi.org/10.1016/j.neucom.2020.04.110.

    Article  Google Scholar 

  35. 35.

    Wang Q, Hao Y. ALSTM: an attention-based long short-term memory framework for Knowledge Base reasoning[J]. Neurocomputing. 2020;399:342–51. https://doi.org/10.1016/j.neucom.2020.02.065.

    Article  Google Scholar 

  36. 36.

    Pang X, Zhou Y, Li P, Lin W, Wu W, Wang JZ. A novel syntax-aware automatic graphics code generation with attention-based deep neural network[J]. J Netw Comput Appl. 2020:102636. https://doi.org/10.1016/j.jnca.2020.102636.

  37. 37.

    Li W, Tao W, Qiu J, Liu X, Zhou X, Pan Z. Densely connected convolutional networks with attention LSTM for crowd flows prediction[J]. IEEE Access. 2019;7:140488–98. https://doi.org/10.1109/ACCESS.2019.2943890.

    Article  Google Scholar 

  38. 38.

    Wang Z, Zhang L, Ding Z. Hybrid time-aligned and context attention for time series prediction[J]. Knowl-Based Syst. 2020: 105937. https://doi.org/10.1016/j.knosys.2020.105937.

  39. 39.

    Li F, Gui Z, Zhang Z, Peng D, Tian S, Yuan K, et al. A hierarchical temporal attention-based LSTM encoder-decoder model for individual mobility prediction[J]. Neurocomputing. 2020;403:153–66. https://doi.org/10.1016/j.neucom.2020.03.080.

    Article  Google Scholar 

  40. 40.

    Zou Q, Xiong Q, Li Q, Yi H., Yu Y., Wu C. A water quality prediction method based on the multi-time scale bidirectional long short-term memory network[J]. Environ Sci Pollut Res. 2020:1–12. https://doi.org/10.1007/s11356-020-08087-7.

  41. 41.

    Maleki A, Nasseri S, Aminabad MS, Hadi M. Comparison of ARIMA and NNAR models for forecasting water treatment plant’s influent characteristics[J]. KSCE J Civ Eng. 2018;22(9):3233–45. https://doi.org/10.1007/s12205-018-1195-z.

    Article  Google Scholar 

  42. 42.

    Dai S, Li L, Li Z. Modeling vehicle interactions via modified LSTM models for trajectory prediction[J]. IEEE Access. 2019;7:38287–96. https://doi.org/10.1109/ACCESS.2019.2907000.

  43. 43.

    Tukkaraja P, Keerthipati M, French A. Simulating temperature inversions in surface mines using computational fluid dynamics[C]. Proc South Dakota Acad Sci. 2016;95:119.

    Google Scholar 

Download references

Funding

This research was funded by the National Key R&D Program, grant number 2018YFC0808306.

Author information

Affiliations

Authors

Contributions

Author Contributions: Conceptualization, L.L., RX.Z. and JD.S.; methodology, L.L. and RX.Z.; software, L.L. and Q.H.; validation, L.L. and LZ.K.; formal analysis, L.L. and LZ.K.; investigation, L.L. and X.L. resources, L.L. and RX.Z.; data curation, L.L. and LZ.K.; original draft preparation, L.L., LZ.K. and Q.H.; manuscript review and editing, L.L., RX.Z., LZ.K., and Q.H.; visualization, L.L. and LZ.K.; supervision, RX.Z.; project administration, RX.Z.; funding acquisition, RX.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, R., Sun, J. et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. J Environ Health Sci Engineer (2021). https://doi.org/10.1007/s40201-021-00613-0

Download citation

Keywords

  • Deep learning
  • Dust monitoring
  • Inversion layer
  • LSTM-attention
  • Open-pit mine
  • TSP prediction