Skip to main content

Advertisement

Log in

Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture

  • Research Article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

This study investigated the effect of organic loading rate (OLR) and NaCl concentration on biohydrogen production by preheated anaerobic sludge in a lab scale anaerobic sequencing batch reactor (ASBR) fed with glucose during long time operation.

Methods

During ASBR operation, the OLR was increased in steps from 0.5 to 5 g glucose/L.d and NaCl addition started at an OLR of 5 g glucose/L.d, to obtain NaCl concentrations in the reactor in the range of 0.5–30 g/L.

Results

With an increasing OLR from 0.5 to 5 g glucose/L.d, the biohydrogen yield increased and reached 0.8 ± 0.4 mol H2/mol glucose at an OLR of 5 g glucose/L.d. A NaCl concentration of 0.5 g/L resulted in a higher yield of biohydrogen (1.1 ± 0.2 mol H2/mol glucose). Concentrations above 0.5 g/L NaCl led to decreasing biohydrogen yield and the lowest yield (0.3 ± 0.1 mol H2/mol glucose) was obtained at 30 g/L of NaCl. The mass balance errors for C, H, and O in all constructed stoichiometric reactions were below 5%.

Conclusions

The modified Monod model indicated that r (H2)max and Ccrit values were 23.3 mL H2/g VSS/h and 119.9 g/L, respectively. Additionally, ASBR operation at high concentrations of NaCl shifted the metabolic pathway from acidogenic toward solventogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C :

Added NaCl concentration (g/L)

C crit :

Critical NaCl concentration by H2 production ceases (g/L)

C I,50 :

NaCl concentration with repress 50% of relative activity (g/L)

k c :

Specific growth rate (1/h).

K s :

Apparent half velocity constant for the substrate (g/L)

n :

Inhibition degree

r(H 2 ) :

H2 production rate (mL H2/g VSS/h)

r(H 2 ) max :

Maximum H2 production rate (mL H2/g VSS/h)

S:

Substrate concentration (g/L)

SHPR:

Specific biohydrogen production rate (L H2/g VSS.d)

ν :

Specific substrate degradation rate (g/gVSS.h)

νm:

Maximum specific substrate degradation rate (g/gVSS.h)

X :

Microbial concentration (gVSS/L)

X 0 :

Initial microbial concentration (g VSS/L)

X max :

Maximum microbial concentration (g/L)

References

  1. Amin MM, Bina B, Taheri E, Fatehizadeh A, Ghasemian M. Stoichiometry evaluation of biohydrogen production from various carbohydrates. Environ Sci Pollut Res. 2016;23(20):20915–21. https://doi.org/10.1007/s11356-016-7244-6.

  2. Liu X, Ren N, Song F, Yang C, Wang A. Recent advances in fermentative biohydrogen production. Prog Nat Sci. 2008;18:253–8.

    Article  CAS  Google Scholar 

  3. Wang Y, Mu Y, Yua H-Q. Comparative performance of two upflowanaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrog Energy. 2007;32:1086–94.

    Article  CAS  Google Scholar 

  4. Chong M-L, Sabaratnam V, Shirai Y, Hassan MA. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrog Energy. 2009;34:3277–87.

    Article  CAS  Google Scholar 

  5. Amin MM, Khiadani MH, Fatehizadeh A, Taheri E. Validation of linear and non-linear kinetic modeling of saline wastewater treatment by sequencing batch reactor with adapted and non-adapted consortiums. Desalination. 2014;344:228–35.

    Article  CAS  Google Scholar 

  6. Hendriks ATWM, van Lier JB, de Kreuk MK. Growth media in anaerobic fermentative processes: the underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv. 2018;36(1):1–13. https://doi.org/10.1016/j.biotechadv.2017.08.004.

  7. Lee M-J, Kim T-H, Min B, Hwang S-J. Sodium (Na+) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. J Environ Manag. 2012;108:22–6.

    Article  CAS  Google Scholar 

  8. Xia A, Jacob A, Herrmann C, Tabassum MR, Murphy JD. Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate mannitol. Bioresour Technol. 2015;193:488–97.

    Article  CAS  Google Scholar 

  9. Alshiyab H, Kalil MS, Hamid AA, Wan YW. Effect of salts addition on hydrogen production by C. acetobutylicum. Pak J Biol Sci: PJBS. 2008;11:2193–200.

    Article  CAS  Google Scholar 

  10. Sang B-I. Production of hydrogen and volatile fatty acid by Enterobacter sp. T4384 using organic waste materials. J Microbiol Biotechnol. 2013;23:189–94.

    Article  CAS  Google Scholar 

  11. Veluchamy C, Kalamdhad AS. Enhanced methane production and its kinetics model of thermally pretreated lignocellulose waste material. Bioresour Technol. 2017;241:1–9.

    Article  CAS  Google Scholar 

  12. Sponza DT, Uluköy A. Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2, 4 dichlorophenol (2, 4 DCP). J Environ Manag. 2008;86:121–31.

    Article  CAS  Google Scholar 

  13. Mu Y, Wang G, Yu H-Q. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresour Technol. 2006;97:1302–7.

    Article  CAS  Google Scholar 

  14. Mullai P, Rene ER, Sridevi K. Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves, India. Biomed Res Int. 2013;2013:9. https://doi.org/10.1155/2013/265618.

  15. Bhunia P, Ghangrekar M. Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresour Technol. 2008;99:2132–40.

    Article  CAS  Google Scholar 

  16. Yuan X, Shi X, Zhang P, Wei Y, Guo R, Wang L. Anaerobic biohydrogen production from wheat stalk by mixed microflora: kinetic model and particle size influence. Bioresour Technol. 2011;102:9007–12.

    Article  CAS  Google Scholar 

  17. Fatehizadeh A, Bina B, Zare MR, Ghasemian M, Amin MM, Taheri E. Biohydrogen production as clean fuel from physically pretreated mixed culture. Advanced Biomedical Research In Press. 2018;7(1):80. https://doi.org/10.4103/2277-9175.233030.

  18. Amin MM, Bina B, Taheri E, Zare MR, Ghasemian M, van Ginkel SW, et al. Metabolism and kinetic study of bioH2 production by anaerobic sludge under different acid pretreatments. Process Biochem. 2017;61:24–9.

    Article  CAS  Google Scholar 

  19. Eaton AD, Franson MAH. Standard methods for the examination of water & wastewater. Amer Public Health Assn, Washington, DC. 2005;

  20. Cosenza A, Di Bella G, Mannina G, Torregrossa M. The role of EPS in fouling and foaming phenomena for a membrane bioreactor. Bioresour Technol. 2013;147:184–92.

    Article  CAS  Google Scholar 

  21. Cui S (Ed.), Cui S, Wang Q, Izydorczyk M, Brummer Y, Xie S, Liu Q. Food carbohydrates: chemistry, physical properties, and applications. 1sd edn. Boca Raton: CRC Press. 2005.

  22. Waterborg JH. The Lowry method for protein quantitation, The protein protocols handbook: Springer; 2009. p. 7–10.

  23. Manni G, Caron F. Calibration and determination of volatile fatty acids in waste leachates by gas chromatography. J Chromatogr A. 1995;690:237–42.

    Article  CAS  Google Scholar 

  24. Adorno MAT, Hirasawa JS, Varesche MBA. Development and validation of two methods to quantify volatile acids (C2-C6) by GC/FID: headspace (automatic and manual) and liquid-liquid extraction (LLE). Am J Anal Chem. 2014;5:406–14.

    Article  CAS  Google Scholar 

  25. Han K, Levenspiel O. Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng. 1988;32:430–47.

    Article  CAS  Google Scholar 

  26. Zheng X-J, Yu H-Q. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. J Environ Manag. 2005;74:65–70.

    Article  CAS  Google Scholar 

  27. Shida GM, Sader LT, Cavalcante de Amorim EL, Sakamoto IK, Maintinguer SI, Saavedra NK, et al. Performance and composition of bacterial communities in anaerobic fluidized bed reactors for hydrogen production: effects of organic loading rate and alkalinity. Int J Hydrog Energy. 2012;37:16925–34.

    Article  CAS  Google Scholar 

  28. Lee HS, Rittmann BE. Evaluation of metabolism using stoichiometry in fermentative biohydrogen. Biotechnol Bioeng. 2009;102:749–58.

    Article  CAS  Google Scholar 

  29. Zhang S, Lee Y, Kim T-H, Hwang S-J. Effects of OLRs and HRTs on hydrogen production from high salinity substrate by halophilic hydrogen producing bacterium (HHPB). Bioresour Technol. 2013;141:227–32.

    Article  CAS  Google Scholar 

  30. Junghare M, Subudhi S, Lal B. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy. 2012;37:3160–8.

    Article  CAS  Google Scholar 

  31. Zheng X, Zheng Y, Yu H. Influence of NaCl on hydrogen production from glucose by anaerobic cultures. Environ Technol. 2005;26:1073–80.

    Article  CAS  Google Scholar 

  32. Intanoo P, Chavadej J, Chavadej S. Effect of COD loading rate on hydrogen production from alcohol wastewater. Int J Chem Biol Eng. 2012;6:272–6.

    CAS  Google Scholar 

  33. Müller V. Bacterial fermentation. In: Encylopedia of Life Sciences. Nature Publishing; 2001. p. 1-7.

  34. Ren N, Li J, Li B, Wang Y, Liu S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy. 2006;31:2147–57.

    Article  CAS  Google Scholar 

  35. Mohan SV, Bhaskar YV, Sarma P. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res. 2007;41:2652–64.

    Article  CAS  Google Scholar 

  36. Guo L, Zong Y, Lu M, Zhang J. Effect of different substrate concentrations and salinity on hydrogen production from mariculture organic waste (MOW). Int J Hydrog Energy. 2014;39:736–43.

    Article  CAS  Google Scholar 

  37. Taheri E, Khiadani MH, Amin MM, Nikaeen M, Hassanzadeh A. Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation. Bioresour Technol. 2012;111:21–6.

    Article  CAS  Google Scholar 

  38. Vyrides I, Stuckey DC. Adaptation of anaerobic biomass to saline conditions: role of compatible solutes and extracellular polysaccharides. Enzym Microb Technol. 2009;44:46–51.

    Article  CAS  Google Scholar 

  39. Burton FL, Tchobanoglous G, Tsuchihashi R, Stensel HD, Metcalf, Eddy I. Wastewater engineering: treatment and resource recovery. New York: McGraw-Hill Education; 2013.

  40. Kuşçu ÖS, Sponza DT. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor. J Hazard Mater. 2009;161:787–99.

    Article  CAS  Google Scholar 

  41. Cayol J-L, Ollivier B, Patel B, Ageron E, Grimont P, Prensier G, et al. Haloanaerobium lacusroseus sp. nov., an extremely halophilic fermentative bacterium from the sediments of a hypersaline lake. Int J Syst Evol Microbiol. 1995;45:790–7.

    CAS  Google Scholar 

  42. CAYOL J-L, OLLIVIER B, BKC PATEL, PRENSIER G, GUEZENNEC J, GARCIA J-L. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a Halophilic, Thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Evol Microbiol. 1994;44:534–40.

    CAS  Google Scholar 

  43. Kivistö AT, Karp MT. Halophilic anaerobic fermentative bacteria. J Biotechnol. 2011;152:114–24.

    Article  CAS  Google Scholar 

  44. Mouné S, Manac'h N, Hirschler A, Caumette P, Willison JC, Matheron R. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int J Syst Evol Microbiol. 1999;49:103–12.

    Google Scholar 

  45. Li J, Yu L, Yu D, Wang D, Zhang P, Ji Z. Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater. Biodegradation. 2014;25:127–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of Isfahan University of Medical Sciences (IUMS) under project #394341.

Funding

This paper is issued from the thesis of Ensiyeh Taheri and Isfahan University of Medical Sciences (IUMS) was financial support.

Author information

Authors and Affiliations

Authors

Contributions

Bijan Bina supervised the study, Ensiyeh Taheri was the main investigator, collected the data, Mohammad Mehdi Amin and Hamidreza Pourzamani were advisor the study, Ensiyeh Taheri, Ali Fatehizadeh, and Henri Spanjers drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bijan Bina.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, E., Amin, M.M., Fatehizadeh, A. et al. Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture. J Environ Health Sci Engineer 16, 159–170 (2018). https://doi.org/10.1007/s40201-018-0304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-018-0304-8

Keywords

Navigation