The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin‐induced diabetic rats



Oxidative stress resulting from chronic hyperglycemia induced many complications in diabetes and led to disorders and dysfunctions in different organs. This study aimed to evaluate the hepatoprotective rate of cress seeds (CS) or Lepidium sativum seeds in the diet on lowering hyperglycemia and oxidative stress damaging.


Diabetes was induced by a single intraperitoneal injection of 60 mg/kg of streptozotocin (STZ). Forty-eight male rats were randomly divided into six groups : (D-0) and (ND-0) diabetic, and non-diabetic groups were fed with a normal diet, (ND-CS2) and (ND-CS5) non-diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively, (D-CS2) and (D-CS5) diabetic groups were fed with diet containing 2 % and 5 % of cress seeds respectively. After 28 days of treatment, biochemical, histological, and oxidative parameters were determined. Hepatic and pancreatic histological sections were developed.


STZ-injection caused hyperglycemia accompanied by a disturbance in biochemical parameters and intensified oxidative stress status compared to the (ND-0) group. Hepatic and pancreatic histological sections of diabetic rats showed a disrupted architecture. However, the cress seeds-diet revealed a significant decrease of hyperglycemia and a reduction of the intensity of oxidative stress induced by diabetes compared to the (D-0) group, remarked by a decreased level of Malondialdehyde (MDA) and high levels of glutathione (GSH) and the antioxidant enzymes, led to the decrease of the majority of parameters principally hepatic and lipid profile with histological regeneration.


Cress seeds supplementation confirmed their potential anti-diabetic and antioxidant activities with higher efficacy of 5 % dose than the lower dose of 2 %. Therefore, 5 % of cress seeds administration seems to be the excellent rate recommended in controlling diabetes and its complications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    El Barky AR, Ezz AA, Alm-Eldeen H, Hussein AAE, Hafez SA, Mohamed YA. Can stem cells ameliorate the pancreatic damage induced by streptozotocin in rats? Can J Diabetes. 2017;42(1):61–70.

    PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Ghosh S, Chowdhury S, Sarkar P, Sil PC. Ameliorative role of ferulic acid against diabetes-associated oxidative stress-induced spleen damage. Food Chem Toxicol. 2018;118:272–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Chauhan K, Sharma S, Agarwal N, Chauhan S, Chauhan B. A study on potential hypoglycemic and hypolipidemic effects of Lepidium Sativum (Garden Cress) in Alloxan induced diabetic rats. Am J Pharm Tech Res. 2012;2(3):522–35.

    Google Scholar 

  4. 4.

    Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes. 2015;39(1):44–9.

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Attia ES, Amer AH, Hassanein MA. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat Prod Res. 2017;33(6):901–5.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine Connect. 2018;7(1):R38-46.

    CAS  Article  Google Scholar 

  7. 7.

    Ghayati Z. Antioxydants and diabetes type 2 (Doctoral dissertation). 2019. URL:

  8. 8.

    Malar MJ, Vanmathi JS, Chairman K. Antidiabetic activity of different parts of the plant Lepidium sativum Linn. Asian J App Sci Technol. 2017;1(9):135–41.

    Google Scholar 

  9. 9.

    Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:1–11.

    Google Scholar 

  10. 10.

    Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7(1):90.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr Clin Res Rev. 2018;12(3):455–62.

    Article  Google Scholar 

  12. 12.

    Laura A, Klibet F, Bourogaa E, Benamara A, Boumendjel A, Chefrour A, Messiah M. Potential antioxidant properties and hepatoprotective effects of Juniperus phoenicea berries against CCl4 induced hepatic damage in rats. Asian Pac J Trop Med. 2017;10(3):263-9.

    Google Scholar 

  13. 13.

    Kamkar MMA, Ahmad R, Alsmadi O, Behbehani K. Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: mini-review. J Diabetes Metab Disord. 2014;13(1):57.

    Article  CAS  Google Scholar 

  14. 14.

    Karigidi KO, Akintimehin ES, Omoboyowa DA, Adetuyi FO, Olaiya CO. Effect of Curculigo pilosa supplemented diet on blood sugar, lipid metabolism, hepatic oxidative stress and carbohydrate metabolism enzymes in streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2020;2020:1–12.

    Google Scholar 

  15. 15.

    Tran TQ, Hsu YM, Huang YC, Chen CJ, Lin WD, Lin YJ, Chen SY. Integrated analysis of gene modulation profile identifies pathogenic factors and pathways in the liver of diabetic mice. J Diabetes Metab Disord. 2019;8(2):471–85.

    Article  Google Scholar 

  16. 16.

    Mohamed J, Nafizah AN, Zariyantey AH, Budin S. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J. 2016;16(2):e132.

  17. 17.

    Mishra N, Mohammed A, Rizvi SI. Efficacy of Lepidium Sativum to act as an anti-diabetic agent. Prog Health Sci. 2017;7(1):44–53.

    CAS  Article  Google Scholar 

  18. 18.

    Desai SS, Walvekar MV, Shaikh NH. Cytoprotective effects of Lepidium sativum seed extract on liver and pancreas of HFD/STZ induced type 2 diabetic mice. Inter J Pharm Phytochem Res. 2017;9(4):502–7.

    Google Scholar 

  19. 19.

    Kumar V, Tomar V, Ranade SA, Yadav HK, Srivastava M. Phytochemical, antioxidant investigations and fatty acid composition of Lepidium sativum seeds. J Environ Biol. 2020;41(1):59–65.

    CAS  Article  Google Scholar 

  20. 20.

    Raish M, Ahmad A, Alkharfy KM, Ahamad SR, Mohsin K, Al-Jenoobi F, Ansari MA. Hepatoprotective activity of Lepidium sativum seeds against D-galactosamine/ lipopolysaccharide-induced hepatotoxicity in animal model. BMC Complement Altern Med. 2016;16(1):501.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Protective effect of Lepidium sativum seed extract against hydrogen peroxide-induced cytotoxicity and oxidative stress in human liver cells (HepG2). Pharm Biol. 2016;54(2):314–21.

    PubMed  Article  Google Scholar 

  22. 22.

    Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes Target Ther. 2015;8:181.

    Google Scholar 

  23. 23.

    Weckbecker G, Cory JG. Ribonucleotide reductase activity and growth of glutathione-depended mouse leukaemia L1210 cells in vitro. Cancer Lett. 1988;40:257–64.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    CAS  Article  Google Scholar 

  25. 25.

    Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzym. 1984;105:114–20.

    Article  Google Scholar 

  26. 26.

    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.

    PubMed  Article  Google Scholar 

  27. 27.

    Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    CAS  Article  Google Scholar 

  28. 28.

    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Saka S, Aouacheri O. The investigation of the oxidative stress-related parameters in high doses methotrexate-induced albino Wistar rats. J Bioequiv Availab. 2017;9:372-6.

    Google Scholar 

  30. 30.

    Houlot R. Techniques d’histopathologie et de cytopathologie. Paris: Editions Maloine; 1984.

    Google Scholar 

  31. 31.

    Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430.

    CAS  PubMed Central  Article  Google Scholar 

  32. 32.

    Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol. 2016a;97:187–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Tebboub I, Kechrid Z. Effect of Curcuma on zinc, lipid profile and antioxidants levels in blood and tissue of streptozotocin-induced diabetic rats fed zinc deficiency diet. Arch Physiol Biochem. 2019;2019:1–8.

    Article  CAS  Google Scholar 

  34. 34.

    Kim JD, Kang SM, Seo BI, Choi HY, Choi HS, Ku SK. Anti-diabetic activity of SMK001, a polyherbal formula in streptozotocin-induced diabetic rats: therapeutic study. Biol Pharm Bull. 2006;29(3):477–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Zafar M, Naqvi SNUH. Effects of STZ-induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. Int J Morphol. 2010;28(1):135–42.

    Article  Google Scholar 

  36. 36.

    Wang F, Li H, Zhao H, Zhang Y, Qiu P, Li J, Wang S. Antidiabetic activity and chemical composition of Sanbai melon seed oil. Evid Based Complement Alternat Med. 2018;2018:1–14.

    Google Scholar 

  37. 37.

    Lanjhiyana S, Garabadu D, Ahirwar D, Bigoniya P, Rana AC, Patra KC, Karuppaih M. Antidiabetic activity of methanolic extract of stem bark of Elaeodendron glaucum Pers. in alloxanized rat model. Adv Appl Sci Res. 2011;2(1):47–62.

    CAS  Google Scholar 

  38. 38.

    Pitchai D, Manikkam R. Hypolipidemic, hepato-protective and renal damage recovering effects of catechin isolated from the methanolic extract of Cassia fistula stem bark on Streptozotocin-induced diabetic Wistar rats: a biochemical and morphological analysis. Med Chem Res. 2012;21(12):4535–41.

    CAS  Article  Google Scholar 

  39. 39.

    Al-khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.

    Google Scholar 

  40. 40.

    Shukla AK, Bigoniya P, Soni P. Hypolipidemic activity of Lepidium sativum Linn. seed in rats. IOSR J Pharm Biol Sci. 2015;10(4):13–22.

    Google Scholar 

  41. 41.

    Halaby MS, Farag MH, Mahmoud SA. Protective and curative effect of garden cress seeds on acute renal failure in male albino rats. Middle East J Appl Sci. 2015;5(2):573–86.

    Google Scholar 

  42. 42.

    Rajasekar R, Manokaran K, Rajasekaran N, Duraisamy G, Kanakasabapathi D. Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. J Diabetes Metab Disord. 2014;13(1):33.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11(4):1365–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Qusti S, El Rabey HA, Balashram SA. The hypoglycemic and antioxidant activity of cress seed and cinnamon on streptozotocin induced diabetes in male rats. Evid BasedComplement Alternat Med. 2016;2016:1–15.

    Article  Google Scholar 

  45. 45.

    Eddouks M, Maghrani M, Zeggwagh NA, Michel JB. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J Ethnopharmacol. 2005;97(2):391–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Prajapati VD, Maheriya PM, Jani GK, Patil PD, Patel BN. Lepidium sativum Linn.: a current addition to the family of mucilage and its applications. Int J Biol Macromol. 2014;65:72–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Radwan HM, El-Missiry MM, Al-Said WM, Ismail A, Abdel Shafeek KA, Seif-El-Nasr MM. Investigation of the glucosinolates of Lepidium sativum growing in Egypt and their biological activity. Res J Med Med Sci. 2007;2(2):127–32.

    CAS  Google Scholar 

  48. 48.

    Shukla A, Bigoniya P, Srivastava B. Hypoglycemic activity of Lepidium sativum Linn seed total alkaloid on alloxan-induced diabetic rats. Res J Med Plant. 2012;6(8):587–96.

    CAS  Article  Google Scholar 

  49. 49.

    Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12(1):1–20.

    Article  CAS  Google Scholar 

  50. 50.

    Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomed. 2019;14:8787–804.

    CAS  Article  Google Scholar 

  51. 51.

    Vozarova B, Stefan N, Lindsay RS, Saremi A, Pratley RE, Bogardus C, Tataranni PA. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes. 2002;51(6):1889–95.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Al-Khazraji SM. Biopharmacological studies of the aqueous extract of Lepidium sativum seeds in alloxan-induced diabetes in rats. Iraqi J Vet Med. 2012;36(2):158–63.

    Google Scholar 

  53. 53.

    Achi NK, Ohaeri OC, Ijeh II, Eleazu C. Modulation of the lipid profile and insulin levels of streptozotocin-induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomed Pharmacother. 2017;86:562-9.

    Article  CAS  Google Scholar 

  54. 54.

    Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Europ Heart J. 2019;0:1–14.

    Google Scholar 

  55. 55.

    Alharbi FK, Sobhy HM. Influence of dietary supplementation of garden cress (Lepidium sativum L.) on histopathology and serum biochemistry in Diabetic Rats. Egyptian J Chem Env Health. 2017;3(1):1–19.

    Google Scholar 

  56. 56.

    El Barky AR, Hussein SA. Alm-Eldeen AA, Hafez YA, Mohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharma. 2016;84:1472-87.

    Article  CAS  Google Scholar 

  57. 57.

    Amawi K, Aljamal A. Effect of Lepidium sativum on lipid profiles and blood glucose in rats. J Phys Pharm Adv. 2012;2(8):277–81.

    Google Scholar 

  58. 58.

    Ayepola OR, Brooks NL, Oguntibeju OO. Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. 2014; [Online] Available at:

  59. 59.

    Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radical Biol Med. 2011;50(5):567–75.

    CAS  Article  Google Scholar 

  61. 61.

    Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016;24(5):547–53.

    PubMed  Article  Google Scholar 

  62. 62.

    Adeyemi DO, Ukwenya VO, Obuotor EM, Adewole SO. Anti-hepatotoxic activities of Hibiscus sabdariffa L. in animal model of streptozotocin diabetes-induced liver damage. BMC Compl Altern Med. 2014;14(1):277.

    Article  Google Scholar 

  63. 63.

    Mendes-Braz M, Martins JO. Diabetes mellitus and liver surgery: the effect of diabetes on oxidative stress and inflammation. Mediat Inflam. 2018;2018:1–11.

    Article  CAS  Google Scholar 

  64. 64.

    Palma HE, Wolkmer P, Gallio M, Corrêa MM, Schmatz R, Thomé GR, Pereira LB, Castro VS, Pereira AB, Bueno A, de Oliveira LS, Rosolen D, Mann TR, de Cecco BS, Graça DL, Lopes ST, Mazzanti CM. Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem. 2014;386(1–2):199–210.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ghosh S, Bhattacharyya S, Rashid K, Sil PC. Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicol Rep. 2015;2:365–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Sekou O, Boumendjel M, Taibi F, Boumendjel A, Messarah M. Mitigating effects of antioxidant properties of Artemisia herba alba aqueous extract on hyperlipidemia and oxidative damage in alloxan-induced diabetic rats. Arch Physiol Biochem. 2019;125(2):163–73.

    Article  CAS  Google Scholar 

  67. 67.

    Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Dialectal. 2013;12(1):142–6.

    Google Scholar 

  68. 68.

    Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 2013;95(2):366–73.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    El-Zawahry BH, El-Shawwa MM, Hikal FS. Effect of Lepidium sativum on blood levels of apelin and some metabolic and oxidative parameters in obese male rats. Al-Azhar Med J. 2017;46(3):723–38.

    Article  Google Scholar 

  70. 70.

    Madić V, Petrović A, Jušković M, Jugović D, Djordjević L, Stojanović G, Vasiljević P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J Ethnopharmacol. 2020;265:113210.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

Download references


This work is supported by research project (№: D01N01UN230120190004) under the leadership of Professor S. Saka, and funded by the Ministry of Higher Education, Algeria. We would like to thank members of the Algiers Pasteur Institute for providing rats.

Author information



Corresponding author

Correspondence to Amina Doghmane.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest for the authorship and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doghmane, A., Aouacheri, O., Laouaichia, R. et al. The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin‐induced diabetic rats. J Diabetes Metab Disord (2021).

Download citation


  • Lepidium sativum
  • Diabetes
  • Hepatoprotective
  • Oxidative stress
  • Rats