Whole body vibration showed beneficial effect on pain, balance measures and quality of life in painful diabetic peripheral neuropathy: a randomized controlled trial

Abstract

Purpose

The aim of the study was to determine the efficacy of whole body vibration (WBV) therapy on pain, neuropathy disability score, balance, proprioception and quality of life (QOL) in patients with painful diabetic peripheral neuropathy (PDPN).

Methods

Twenty-six (16 males and 10 females) patients with PDPN were selected on the basis of inclusion and exclusion criteria. Subjects were randomly allocated to an experimental group (n = 13, age = 60.69 ± 5.08) and a control group (n = 13, age = 59.54 ± 4.25). The experimental group was given WBV therapy for six weeks (3 days/week) in addition to standard medical care, dietary advice and lifestyle modifications. Control group was provided only standard medical care, dietary advice and lifestyle modifications. Outcome measures included numeric pain rating scale (NPRS), Leeds assessment of neuropathic symptoms and signs (LANSS), vibration perception threshold (VPT), neuropathy disability score (NDS), proprioception, single-leg stance test (SLST), timed up and go test (TUGT) and short form 36 questionnaire (SF-36).

Results

NPRS, LANSS, NDS, SLST and TUGT showed significant time effect (p ≤ 0.022) and time×group interaction (p ≤ 0.007), whereas group effect was found to be significant only in LANSS (p = 0.001). VPT showed significant group effect (p ≤ 0.045) and time×group interaction (p ≤ 0.007) at great toe, metatarsal head and total average score. SF-36 was found to be significant time effect (p ≤ 0.024) in all domains except limitations due to physical health (p = 0.461). SF-36 average score was found be significant for group effect (p = 0.002) and time×group interaction (p < 0.001).

Conclusion

WBV improves sensory sensations like pain and vibration perception, neuropathy disability score, balance measures and health-related QOL in PDPN.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Davies M, Brophy S, Williams R, Taylor A. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes. Diabetes Care. 2006;29(7):1518–22.

    PubMed  Article  Google Scholar 

  2. 2.

    Van Acker K, Bouhassira D, De Bacquer D, Weiss S, Matthys K, Raemen H, et al. Prevalence and impact on quality of life of peripheral neuropathy with or without neuropathic pain in type 1 and type 2 diabetic patients attending hospital outpatients clinics. Diabetes Metab. 2009;35(3):206–13.

    PubMed  Article  Google Scholar 

  3. 3.

    Berger A, Dukes EM, Oster G. Clinical characteristics and economic costs of patients with painful neuropathic disorders. J Pain. 2004;5(3):143–9.

    PubMed  Article  Google Scholar 

  4. 4.

    Sadosky A, Mardekian J, Parsons B, Hopps M, Bienen EJ, Markman J. Healthcare utilization and costs in diabetes relative to the clinical spectrum of painful diabetic peripheral neuropathy. J Diabetes Complicat. 2015;29(2):212–7.

    PubMed  Article  Google Scholar 

  5. 5.

    Spanos K, Lachanas VA, Chan P, Bargiota A, Giannoukas AD. Validation of the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) questionnaire and its correlation with visual analog pain scales in Greek population. J Diabetes Complicat. 2015;29(8):1142–5.

    PubMed  Article  Google Scholar 

  6. 6.

    Koc R, Erdemoglu AK. Validity and reliability of the Turkish Self-Administered Leeds Assessment of Neuropathic Symptoms and Signs (S-LANSS) questionnaire. Pain Med. 2010;11(7):1107–14.

    PubMed  Article  Google Scholar 

  7. 7.

    Gore M, Brandenburg N, Tai K. Burden of illness in painful diabetic peripheral neuropathy (DPN): the patients’ perspectives. J Pain. 2005;6(3):S28.

    Article  Google Scholar 

  8. 8.

    Nathan HJ, Poulin P, Wozny D, Taljaard M, Smyth C, Gilron I, et al. Randomized trial of the effect of mindfulness-based stress reduction on pain-related disability, pain intensity, health-related quality of life, and A1C in patients with painful diabetic peripheral neuropathy. Clin Diabetes. 2017;35(5):294–304.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    D’Amato C, Morganti R, Greco C, Di Gennaro F, Cacciotti L, Longo S, et al. Diabetic peripheral neuropathic pain is a stronger predictor of depression than other diabetic complications and comorbidities. Diabetes Vasc Dis Res. 2016;13(6):418–28.

    Article  Google Scholar 

  10. 10.

    Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, et al. Neuropathic pain. Nat Rev Dis Prim. 2017;3(1):17002.

    PubMed  Article  Google Scholar 

  11. 11.

    Benbow SJ, Wallymahmed ME, Macfarlane IA. Diabetic peripheral neuropathy and quality of life. QJM. 1998;91(11):733–7.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract. 2000;47(2):123–8.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Torrance N, Elliott AM, Lee AJ, Smith BH. Severe chronic pain is associated with increased 10 year mortality. A cohort record linkage study. Eur J Pain. 2010;14(4):380–6.

    PubMed  Article  Google Scholar 

  14. 14.

    Cheatle MD. Depression, chronic pain, and suicide by overdose: on the edge. Pain Med. 2011;12(suppl_2):S43–8.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Baum K, Votteler T, Schiab J. Efficiency of vibration exercise for glycemic control in type 2 diabetes patients. Int J Med Sci. 2007;4(3):159–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Manimmanakorn N, Manimmanakorn A, Phuttharak W, Hamlin MJ. Effects of whole body vibration on glycemic indices and peripheral blood flow in type II diabetic patients. Malay J Med Sci. 2017;24(4):55–63.

    Google Scholar 

  17. 17.

    Gomes-Neto M, da Cunha de Sá-Caputo D, Paineiras-Domingos LL, Brandão AA, Neves MF, Marin PJ, et al. Effects of whole-body vibration in older adult patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Can J Diabetes. 2019;43(7):524–9.

    PubMed  Article  Google Scholar 

  18. 18.

    Lee K, Lee S, Song C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J Exp Med. 2013;231(4):305–14.

    PubMed  Article  Google Scholar 

  19. 19.

    Perchthaler D, Horstmann T, Grau S. Variations in neuromuscular activity of thigh muscles during whole-body vibration in consideration of different biomechanical variables. J Sports Sci Med. 2013;12(3):439–46.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kessler NJ, Hong J. Whole body vibration therapy for painful diabetic peripheral neuropathy: a pilot study. J Bodyw Mov Ther. 2013;17(4):518–22.

    PubMed  Article  Google Scholar 

  21. 21.

    Stambolieva K, Petrova D, Irikeva M. Positive effects of plantar vibration training for the treatment of diabetic peripheral neuropathy: a pilot study. Somatosens Mot Res. 2017;34(2):129–33.

    PubMed  Article  Google Scholar 

  22. 22.

    Kordi Yoosefinejad A, Shadmehr A, Olyaei G, Talebian S, Bagheri H, Mohajeri-Tehrani MR. Short-term effects of the whole-body vibration on the balance and muscle strength of type 2 diabetic patients with peripheral neuropathy: a quasi-randomized-controlled trial study. J Diabetes Metab Disord. 2015;14(1):45.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Santin-Medeiros F, Santos-Lozano A, Cristi-Montero C, Garatachea VN. Effect of 8 months of whole-body vibration training on quality of life in elderly women. Res Sport Med. 2017;25(1):101–7.

    Article  Google Scholar 

  24. 24.

    Carvalho-Lima RP, Sá-Caputo DC, Moreira-Marcon E, Dionello C, Paineiras-Domingos LL, Sousa-Gonçalves CR, et al. Quality of life of patients with metabolic syndrome is improved after whole body vibration exercises. Afr J Tradit Complement Altern Med. 2017;14(4S):59–65.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Li G, Zhang G, Wang Y, Wang X, Zhou H, Li H, et al. The effect of whole body vibration on health-related quality of life in patients with chronic conditions: a systematic review. Qual Life Res. 2019;28(11):2859–70.

    PubMed  Article  Google Scholar 

  26. 26.

    Argoff CE, Cole BE, Fishbain DA, Irving GA. Diabetic peripheral neuropathic pain: clinical and quality-of-life issues. Mayo Clin Proc. 2006;81(4 SUPPL):S3–11.

    PubMed  Article  Google Scholar 

  27. 27.

    Suresh K. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011 Jan;4(1):8.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Rodriguez CS. Pain measurement in the elderly: a review. Pain Manag Nurs. 2001;2(2):38–46.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Kahl C, Cleland JA. Visual analogue scale, numeric pain rating scale and the McGill pain Questionnaire: an overview of psychometric properties. Phys Ther Rev. 2005;10(2):123–8.

    Article  Google Scholar 

  30. 30.

    Good M, Stiller C, Zauszniewski JA, Anderson GC, Stanton-Hicks M, Grass JA. Sensation and distress of pain scales: reliability, validity, and sensitivity. J Nurs Meas. 2001;9(3):219–36.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Chen J, Li L. Validation of neuropathic pain assessment tools among Chinese patients with painful diabetic peripheral neuropathy. Int J Nurs Sci. 2016;3(2):139–45.

    Google Scholar 

  32. 32.

    Hamdan A, Luna JD, Del Pozo E, Gálvez R. Diagnostic accuracy of two questionnaires for the detection of neuropathic pain in the Spanish population. Eur J Pain. 2014;18(1):101–9.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Olaleye D, Perkins BA, Bril V. Evaluation of three screening tests and a risk assessment model for diagnosing peripheral neuropathy in the diabetes clinic. Diabetes Res Clin Pract. 2001;54(2):115–28.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    van Deursen RWM, Sanchez MM, Derr JA, Becker MB, Ulbrecht JS, Cavanagh PR. Vibration perception threshold testing in patients with diabetic neuropathy: ceiling effects and reliability. Diabet Med. 2001;18(6):469–75.

    PubMed  Article  Google Scholar 

  35. 35.

    Chawla A, Bhasin G, Chawla R. Validation of Neuropathy Symptoms Score (NSS) and Neuropathy Disability Score (NDS) in the clinical diagnosis of peripheral neuropathy in middle aged people with diabetes. Internet J Fam Pract. 2013;12:1.

    Google Scholar 

  36. 36.

    Noohu MM, Moiz JA, Dey AB, Hussain ME. A balance device reliability for reaction time and proprioception measurement in older adults. Indian J Gerontol. 2016;30(3):396–403.

    Google Scholar 

  37. 37.

    Hurvitz EA, Richardson JK, Werner RA. Unipedal stance testing in the assessment of peripheral neuropathy. Rehabil Med Serv. 2001;82(2):198–204.

    CAS  Article  Google Scholar 

  38. 38.

    Springer BA, Marin R, Cyhan T, Roberts H, Gill NW. Normative values for the unipedal stance test with eyes open and closed. J Geriatr Phys Ther. 2007;30(1):8–15.

    PubMed  Article  Google Scholar 

  39. 39.

    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    CAS  Article  Google Scholar 

  40. 40.

    Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000;80(9):896–903.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    White CA, Pilkey RM, Lam M, Holland DC. Pre-dialysis clinic attendance improves quality of life among hemodialysis patients. BMC Nephrol. 2002;3(1):3.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    McHorney. The MOS 36-Item Short-Form Health Survey (SF-36): III. Tests of data quality, Scaling Assumptions, and Reliability across Diverse Patient Groups. Med Care. 1994;32(1):40–66.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Bruyere O, Wuidart M-A, Di Palma E, Gourlay M, Ethgen O, Richy F, et al. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil. 2005;86(2):303–7.

    PubMed  Article  Google Scholar 

  44. 44.

    Hong J, Barnes MJ, Kessler NJ. Case study: use of vibration therapy in the treatment of diabetic peripheral small fiber neuropathy. Int J Diabetes Mellit. 2015;3(1):72–5.

    Article  Google Scholar 

  45. 45.

    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Longe SE, Wise R, Bantick S, Lloyd D, Johansen-Berg H, McGlone F, et al. Counter-stimulatory effects on pain perception and processing are significantly altered by attention: an fMRI study. Neuroreport. 2001;12(9):2021–5.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Armstrong WJ, Nestle HN, Grinnell DC, Cole LD, Van Gilder EL, Warren GS, et al. The acute effect of whole-body vibration on the Hoffmann reflex. J Strength Cond Res. 2008;22(2):471–6.

    PubMed  Article  Google Scholar 

  48. 48.

    Kipp K, Johnson ST, Doeringer JR, Hoffman MA. Spinal reflex excitability and homosynaptic depression after a bout of whole-body vibration. Muscle Nerve. 2011;43(2):259–62.

    PubMed  Article  Google Scholar 

  49. 49.

    Ginanneschi F, Dominici F, Milani P, Biasella A, Rossi A, Mazzocchio R. Changes in the recruitment curve of the soleus H-reflex associated with chronic low back pain. Clin Neurophysiol. 2007;118(1):111–8.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Nijs J, Van Houdenhove B. From acute musculoskeletal pain to chronic widespread pain and fibromyalgia: application of pain neurophysiology in manual therapy practice. Man Ther. 2009;14(1):3–12.

    PubMed  Article  Google Scholar 

  51. 51.

    Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, et al. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994;14(7):4095–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Lee K, Lee S, Song C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J Exp. 2012:305–14.

  53. 53.

    Chao CC, Hsieh SC, Yang WS, Lin YH, Lin WM, Tai TY, Hsieh ST. Glycemic control is related to the severity of impaired thermal sensations in type 2 diabetes. Diabetes Metab Res Rev. 2007;23(8):612–20.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Feki I, Lefaucheur JP. Correlation between nerve conduction studies and clinical scores in diabetic neuropathy. Muscle Nerve. 2001;24(4):555–8.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    del Pozo-Cruz J, Alfonso-Rosa RM, Ugia JL, McVeigh JG, del Pozo-Cruz B, Sañudo B. A primary care–based randomized controlled trial of 12-week whole-body vibration for balance improvement in type 2 diabetes mellitus. Arch Phys Med Rehabil. 2013;94(11):2112–8.

    PubMed  Article  Google Scholar 

  56. 56.

    del Pozo-Cruz B, Alfonso-Rosa RM, del Pozo-Cruz J, Sañudo B, Rogers ME. Effects of a 12-wk whole-body vibration based intervention to improve type 2 diabetes. Maturitas. 2014;77(1):52–8.

    PubMed  Article  Google Scholar 

  57. 57.

    Álvarez-Barbosa F, del Pozo-Cruz J, del Pozo-Cruz B, Alfonso-Rosa RM, Rogers ME, Zhang Y. Effects of supervised whole body vibration exercise on fall risk factors, functional dependence and health-related quality of life in nursing home residents aged 80+. Maturitas. 2014;79(4):456–63.

    PubMed  Article  Google Scholar 

  58. 58.

    Nied RJ, Franklin B. Promoting and prescribing exercise for the elderly. Am Fam Physician. 2002;65(3):419–26.

    PubMed  Google Scholar 

  59. 59.

    Trans T, Aaboe J, Henriksen M, Christensen R, Bliddal H, Lund H. Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis. Knee. 2009;16(4):256–61.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Judge JO, King MB, Whipple R, Clive J, Wolfson LI. Dynamic balance in older persons: effects of reduced visual and proprioceptive input. J Gerontol Ser A Biol Sci Med Sci. 1995;50A(5):M263–70.

    Article  Google Scholar 

  61. 61.

    Vinik AI, Nevoret M-L, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin N Am. 2013;42(4):747–87.

    Article  Google Scholar 

  62. 62.

    Quattrini C, Tesfaye S. Understanding the impact of painful diabetic neuropathy. Diabetes Metab Res Rev. 2003;19(S1):S2–8.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irshad Ahmad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamal, A., Ahmad, I., Ahamed, N. et al. Whole body vibration showed beneficial effect on pain, balance measures and quality of life in painful diabetic peripheral neuropathy: a randomized controlled trial. J Diabetes Metab Disord 19, 61–69 (2020). https://doi.org/10.1007/s40200-019-00476-1

Download citation

Keywords

  • Diabetic neuropathy
  • Neuropathy disability score
  • Single leg stance
  • Timed up and go
  • SF-36