Obesity paradox on the survival of elderly patients with diabetes: an AHAP-based study

  • Ali Bijani
  • Robert G. Cumming
  • Seyed-Reza Hosseini
  • Masoumeh Yazdanpour
  • Mahdis Rahimi
  • Abbas Sahebian
  • Reza Ghadimi
Research Article
  • 30 Downloads

Abstract

Background and objectives

Overweight and obesity are among the important challenges in health issues and survival of elderly people. The current study aimed to evaluate the survival rate of elderly patients with diabetes, and its influencing factors, on the basis of body mass index (BMI).

Methods and materials

The design of the current study was based on the Amirkola Health and Aging Project (AHAP) cohort. The 5–year survival rate of elderly people with diabetes and the factors that influence the mortality rate by Cox regression model were analyzed.

Results

Out of 1616 elderly people who were evaluated in the current study, 501 (31%) had diabetes. The results showed that diabetes significantly increased the mortality rate (adjusted hazard ratio [HR] = 2.10; 95% confidence interval [CI]: 1.57–2.81; P < 0.001). Furthermore, overweight (HR = 0.41; 95%CI: 0.24–0.75; P = 0.002), obesity (HR = 0.30; 95% CI: 0.41–0.63; P = 0.002), history of diabetes (HR = 0.56; 95%CI: 0.34–0.93; P = 0.024), moderate and high physical activity level (HR = 0.36; 95%CI: 0.13–0.99; P = 0.049) decreased the risk of mortality and central obesity (HR = 1.76; 95% CI: 1.01–3.11; P = 0.049), fasting blood sugar ≥200 (HR = 2.46; 95% CI: 1.46–4.15; P < 0.001), brain stroke, and neurological diseases (HR = 3.12; 95% CI: 1.78–5.49; P < 0.001) increased the risk of mortality.

Conclusion

Although overweight and obesity significantly improved the risk of mortality in elderly patients with diabetes, central obesity is still considered as an important risk factor.

Keywords

Obesity Survival Diabetes mellitus Aging 

Abbreviations

AHAP

amirkola health and ageing project

BMI

body mass index

CI

confidence interval

CPH

cox proportional hazard

CVA

cerebrovascular accident

DM

diabetes mellitus

DSSI

duke social support index

FBS

fasting blood sugar

GDS

geriatric depression scale

IDF

international diabetes federation

PASE

physical activity scale for elderly

WC

waist circumference

Notes

Acknowledgements

The authors would like to thank all authorities of Babol University of Medical Sciences,

AHAP collaboration and the elderly participants of this project.

Author contributions

AB, SRH, RC and RG conceived and designed the study. AB, MY, RR and AS gathered the data. AB performed the statistical analysis. AB drafted the manuscript. SRH and RG critically revised the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Our study was reviewed and approved by ethics committee, Babol University of Medical Sciences.

References

  1. 1.
    Rahelić D. 7th edition of IDF diabetes atlas-call for immediate action. Lijec Vjesn. 2016;138(1–2):57–8. https://www.ncbi.nlm.nih.gov/pubmed/?term=27290816.PubMedGoogle Scholar
  2. 2.
    Nasli-Esfahani E, Farzadfar F, Kouhnavard M, Ghodssi-Ghassemabadi R, Khajavi A, Peimani M, et al. Iran diabetes research roadmap (IDRR) study: a preliminary study on diabetes research in the world and Iran. J Diabetes Metab Disord. 2017;16(9)  https://doi.org/10.1186/s40200-017-0291-9. https://www.ncbi.nlm.nih.gov/pubmed/?term=28239599.
  3. 3.
    Cuthbertson DJ, Bell JA, Ng SY, Kemp GJ, Kivimaki M, Hamer M. Dynapenic obesity and the risk of incident type 2 diabetes: the English longitudinal study of ageing. Diabet Med. 2016;33(8):1052–9. https://www.ncbi.nlm.nih.gov/pubmed/26479063.CrossRefPubMedGoogle Scholar
  4. 4.
    Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003;290(14):1884–90. https://www.ncbi.nlm.nih.gov/pubmed/14532317.CrossRefPubMedGoogle Scholar
  5. 5.
    Carnethon MR, Rasmussen-Torvik LJ, Palaniappan L. The obesity paradox in diabetes. Curr Cardiol Rep. 2014;16(2):446.  https://doi.org/10.1007/s11886-013-0446-3. https://www.ncbi.nlm.nih.gov/pubmed/24408674.CrossRefPubMedGoogle Scholar
  6. 6.
    Gao F, Wang ZJ, Shen H, Yang SW, Nie B, Zhou YJ. Impact of obesity on mortality in patients with diabetes: meta-analysis of 20 studies including 250,016 patients. J Diabetes Investig 2017;  https://doi.org/10.1111/jdi.12677. [Epub ahead of print] https://www.ncbi.nlm.nih.gov/pubmed/28593750.
  7. 7.
    Hajian-Tilaki KO, Heidari B. Prevalence of obesity, central obesity and the associated factors in urban population aged 20-70 years, in the north of Iran: a population-based study and regression approach. Obes Rev. 2007;8(1):3–10. https://www.ncbi.nlm.nih.gov/pubmed/17212790.CrossRefPubMedGoogle Scholar
  8. 8.
    Noroozian M. The elderly population in Iran: an ever growing concern in the health system. Iran J Psychiatry Behav Sci. 2012;6(2):1–6. https://www.ncbi.nlm.nih.gov/pubmed/?term=24644476.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Hosseini SR, Cumming RG, Kheirkhah F, Nooreddini H, Baiani M, Mikaniki E, et al. Cohort profile: the Amirkola health and ageing project (AHAP). Int J Epidemiol. 2014;43(5):1393–400.  https://doi.org/10.1093/ije/dyt089. https://www.ncbi.nlm.nih.gov/pubmed/23918798.CrossRefPubMedGoogle Scholar
  10. 10.
    Bijani A, Ghadimi R, Mikaniki E, Kheirkhah F, Mozaffarpur SA, Motallebnejad M, et al. Cohort profile update: the Amirkola health and ageing project (AHAP). Caspian J Intern Med. 2017;8(3):205–12. https://www.ncbi.nlm.nih.gov/pubmed/28932373.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2013; 36 (Suppl 1): S67-S74.  https://doi.org/10.2337/dc13-S067, Diagnosis and Classification of Diabetes Mellitus.
  12. 12.
    Hosseini SR, Cumming RG, Sajjadi P, Bijani A. Chronic diseases among older people in Amirkola, northern Islamic Republic of Iran. East Mediterr Health J. 2011;17(11):843–9. https://www.ncbi.nlm.nih.gov/pubmed/22276492.CrossRefPubMedGoogle Scholar
  13. 13.
    Zghebi SS, Steinke DT, Carr MJ, Rutter MK, Emsley RA, Ashcroft DM. Examining trends in type 2 diabetes incidence, prevalence and mortality in the UK between 2004 and 2014. Diabetes Obes Metab. 2017;19:1537–45.  https://doi.org/10.1111/dom.12964. https://www.ncbi.nlm.nih.gov/pubmed/28387052.CrossRefPubMedGoogle Scholar
  14. 14.
    Onat A, Hergenç G, Uyarel H, Can G, Ozhan H. Prevalence, incidence, predictors and outcome of type 2 diabetes in Turkey. Anadolu Kardiyol Derg. 2006;6(4):314–21. https://www.ncbi.nlm.nih.gov/pubmed/17162275.PubMedGoogle Scholar
  15. 15.
    Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, et al. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2013;1(2):106–14. https://www.ncbi.nlm.nih.gov/pubmed/24622316.CrossRefPubMedGoogle Scholar
  16. 16.
    Dhana K, Kavousi M, Ikram MA, Tiemeier HW, Hofman A1, Franco OH. Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. J Epidemiol Community Health 2016; 70(1):90–96. https://www.ncbi.nlm.nih.gov/pubmed/26160362.
  17. 17.
    Newman AB, Lee JS, Visser M, Goodpaster BH, Kritchevsky SB, Tylavsky FA, et al. Weight change and the conservation of lean mass in old age: the health, aging and body composition study. Am J Clin Nutr. 2005;82:872–8. https://www.ncbi.nlm.nih.gov/pubmed/16210719.CrossRefPubMedGoogle Scholar
  18. 18.
    Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr. 2002;76:473–81. https://www.ncbi.nlm.nih.gov/pubmed/12145025.CrossRefPubMedGoogle Scholar
  19. 19.
    Jang HC. Sarcopenia, frailty, and diabetes in older adults. Diabetes Metab J. 2016;40(3):182–9.  https://doi.org/10.4093/dmj.2016.40.3.182. https://www.ncbi.nlm.nih.gov/pubmed/?term=27098509.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bouchard DR, Janssen I. Dynapenic-obesity and Physical function in older adults. J Gerontol A Biol Sci Med Sci 2010; 65(1):71–77. https://www.ncbi.nlm.nih.gov/pubmed/19887536.
  21. 21.
    Brown JC, Harhay MO, Harhay MN. Sarcopenia and Mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle. 2016;7(3):290–8.  https://doi.org/10.1002/jcsm.12073. https://www.ncbi.nlm.nih.gov/pubmed/27239410.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim JH, Lim S, Choi SH, Kim KM, Yoon JW, Kim KW, et al. Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. J Gerontol A Biol Sci Med Sci. 2014;69(10):1244–52. https://www.ncbi.nlm.nih.gov/pubmed/24721723.CrossRefPubMedGoogle Scholar
  23. 23.
    Murphy RA, Reinders I, Garcia ME, Eiriksdottir G, Launer LJ, Benediktsson R, Gudnason V, Jonsson PV, Harris TB, Age, Gene/Environment Susceptibility-Reykjavik Study (AGES-Reykjavik). Age, gene/environment susceptibility-Reykjavik study (AGES-Reykjavik). Adipose tissue, muscle, and function: potential mediators of associations between body weight and mortality in older adults with type 2 diabetes. Diabetes Care 2014; 37(12): 32133219. https://www.ncbi.nlm.nih.gov/pubmed/?term=25315206.
  24. 24.
    Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and nutrition examination survey. Format: Abstract J Clin Endocrinol Metab. 2011;96(9):2898–903. https://www.ncbi.nlm.nih.gov/pubmed/?term=21778224.Google Scholar
  25. 25.
    Carnethon MR, De Chavez PJ, Biggs ML, Lewis CE, Pankow JS, Bertoni AG, et al. Association of weight status with mortality in adults with incident diabetes. JAMA. 2012;308(6):581–90. https://www.ncbi.nlm.nih.gov/pubmed/22871870.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cho MR, Park JK, Choi WJ, Cho AR, Lee YJ. Serum ferritin level is positively associated with insulin resistance and metabolic syndrome in postmenopausal women: a nationwide population-based study. Maturitas. 2017;103:3–7.  https://doi.org/10.1016/j.maturitas.2017.06.004. https://www.ncbi.nlm.nih.gov/pubmed/28778329.CrossRefPubMedGoogle Scholar
  27. 27.
    Morimoto A, Tatsumi Y, Deura K, Mizuno S, Ohno Y, Watanabe S. Impact of cigarette smoking on impaired insulin secretion and insulin resistance in Japanese men: the Saku study. Journal of Diabetes Investigation. 2013;4(3):274–80. https://www.ncbi.nlm.nih.gov/pubmed/24843666.CrossRefPubMedGoogle Scholar
  28. 28.
    Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215–2222 https://www.ncbi.nlm.nih.gov/pubmed/?term=20609967.
  29. 29.
    Lieber BA, Taylor B, Appelboom G, Prasad K, Bruce S, Yang A, et al. Meta-analysis of telemonitoring to improve HbA1c levels: promise for stroke survivors. J Clin Neurosci. 2015;22(5):807–11. https://www.ncbi.nlm.nih.gov/pubmed/?term=25791996.CrossRefPubMedGoogle Scholar
  30. 30.
    Bijani A, Esmaili H, Ghadimi R, Babazadeh A, Rezaei R, Cumming RG, et al. Development and validation of a semi-quantitative food frequency questionnaire among older people in north of Iran. Caspian J Intern Med. 2018;9(1):78–86. http://caspjim.com/article-1-1241-en.html.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ali Bijani
    • 1
  • Robert G. Cumming
    • 2
  • Seyed-Reza Hosseini
    • 1
  • Masoumeh Yazdanpour
    • 3
  • Mahdis Rahimi
    • 3
  • Abbas Sahebian
    • 3
  • Reza Ghadimi
    • 1
  1. 1.Social Determinants of Health Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
  2. 2.School of Public HealthUniversity of SydneySydneyAustralia
  3. 3.Health Research InstituteBabol University of Medical SciencesBabolIran

Personalised recommendations