Electrochemical and Pseudocapacitive Analysis of Rod-Like MoO2@MoSe2@NC Heterostructures for High-Performance Lithium Ion Batteries

Abstract

A micro-scale rod-like heterostructure derived from molybdenum-based metal organic framework (Mo-MOF) has been successfully prepared via subsequent annealing treatment, which assembled from N-doped carbon encapsulated MoSe2 nanosheets grown on the surface of MoO2 microrod (named as MoO2@MoSe2@NC). For this novel heterostructure, the MoO2 nanoparticles assembled into rod core not only serve as supporting substrate for facilitating the fast kinetics of Li+ cations inside the electrode but also protect the MoSe2 structure from restacking in the charge/discharge process. Moreover, the outer-layered MoSe2 nanosheets enable the fast lithium ion movement owing to its large interlayer spacing. Moreover, this unique rod-like core–shell structure composite could further effectively alleviate the structural strains caused by large volume expansion during charge/discharge process, thus leading to stable electrochemical performance when evaluated as anode material for lithium ion batteries. Electrochemical testing exhibits that the MoO2@MoSe2@NC heterostructure presents highly reversible capacity of 468 mAh g−1 at 0.5 A g−1 and superior rate capability (318 mAh g−1 even at 5.0 A g−1), which is attributed to the synergistic effect of N-doped carbon encapsulated MoSe2 nanosheets and MoO2 nanoparticles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    X. Yang, Y. Wang, B. Hou, H. Liang, X. Zhao, H. Fan, G. Wang, X. Wu, Acta Metall Sin.-Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01001-7

    Article  Google Scholar 

  2. [2]

    S. Mohapatra, S.V. Nair, A.K. Rai, Acta Metall Sin.-Engl. Lett. 31, 164 (2018)

    CAS  Article  Google Scholar 

  3. [3]

    X. Chen, G. Gao, Z. Wu, J. Xiang, X. Li, G. Guan, K. Zhang, RSC Adv. 9, 37556 (2019)

    CAS  Article  Google Scholar 

  4. [4]

    Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Nano Lett. 16, 3321 (2016)

    CAS  Article  Google Scholar 

  5. [5]

    B. Hu, L. Mai, W. Chen, F. Yang, ACS Nano 3, 478 (2009)

    CAS  Article  Google Scholar 

  6. [6]

    Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, B. Yang, H. Fan, J. Xu, C. Zhu, Energy Storage Mater. 11, 67 (2018)

    Article  Google Scholar 

  7. [7]

    H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Q. Yan, J. Xu, Energy Storage Mater. 10, 48 (2018)

    Article  Google Scholar 

  8. [8]

    J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, J. Energy Chem. 33, 100 (2019)

    Article  Google Scholar 

  9. [9]

    H. Wang, X. Wang, L. Wang, J. Wang, D. Jiang, G. Li, Y. Zhang, H. Zhong, Y. Jiang, J. Phys. Chem. C 119, 10197 (2015)

    CAS  Article  Google Scholar 

  10. [10]

    P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 8, 1703259 (2018)

    Article  CAS  Google Scholar 

  11. [11]

    X. Li, M. Sun, S. Cheng, X. Ren, J. Zang, T. Xu, X. Wei, S. Li, Q. Chen, C. Shan, 2D Mater. 6, 035027 (2019)

    CAS  Article  Google Scholar 

  12. [12]

    A. Eftekhari, Appl. Mater. Today 8, 1 (2017)

    Article  Google Scholar 

  13. [13]

    T. Xiang, S. Tao, W. Xu, Q. Fang, C. Wu, D. Liu, Y. Zhou, A. Khalil, Z. Muhammad, W. Chu, Z. Wang, H. Xiang, Q. Liu, L. Song, ACS Nano 11, 6483 (2017)

    CAS  Article  Google Scholar 

  14. [14]

    J. Maier, Nat. Mater. 4, 805 (2005)

    CAS  Article  Google Scholar 

  15. [15]

    F. Xu, L. Wu, Q. Meng, M. Kaltak, J. Huang, J.L. Durham, M. Fernandez-Serra, L. Sun, A.C. Marschilok, E.S. Takeuchi, K.J. Takeuchi, M.S. Hybertsen, Y. Zhu, Nat. Commun. 8, 15400 (2017)

    CAS  Article  Google Scholar 

  16. [16]

    X. Zhao, J. Sui, F. Li, H. Fang, H. Wang, J. Li, W. Cai, G. Cao, Nanoscale 8, 17902 (2016)

    CAS  Article  Google Scholar 

  17. [17]

    C. Huang, S. Wu, A.M. Sanchez, J.J. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, Nat. Mater. 13, 1096 (2014)

    CAS  Article  Google Scholar 

  18. [18]

    Z. Mao, H. Wang, D. Chao, R. Wang, B. He, Y. Gong, H. Fan, Small 33, 2001950 (2020)

    Article  CAS  Google Scholar 

  19. [19]

    D. Xu, H. Wang, R. Qiu, Q. Wang, Z. Mao, Y. Jiang, R. Wang, B. He, Y. Gong, D. Li, X. Hu, Energy Storage Mater. 28, 91 (2020)

    Article  Google Scholar 

  20. [20]

    R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang, R. Wang, B. He, Y. Gong, H. Fan, Adv. Energy Mater. 47, 2002741 (2020)

    Article  CAS  Google Scholar 

  21. [21]

    H. Lu, K. Tian, L. Bu., X. Huang, X. Li, Y. Zhao, F. Wang, J. Bai, L. Gao, J. Zhao, J. Energy Chem. 55, 449 (2021).

  22. [22]

    B. Hou, Y. Wang, D. Liu, Z. Gu, X. Feng, H. Fan, T. Zhang, C. Lü, X. Wu, Adv. Funct. Mater. 28, 1805444 (2018)

    Article  CAS  Google Scholar 

  23. [23]

    H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Ed. Engl. 56, 12566 (2017)

    CAS  Article  Google Scholar 

  24. [24]

    P. Martían-Zarza, J.M. Arrieta, M.C. Muñoz-Roca, P. Gili, J. Chem. Soc. Dalton Trans. 10, 1551 (1993)

    Article  Google Scholar 

  25. [25]

    Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen, J.Y. Lee, J. Mater. Chem. A 1, 2202 (2013)

    Article  Google Scholar 

  26. [26]

    Y. Zhang, Q. Gong, L. Li, H. Yang, Y. Li, Q. Wang, Nano Res. 8, 1108 (2014)

    Article  CAS  Google Scholar 

  27. [27]

    L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, Nanoscale 7, 5203 (2015)

    CAS  Article  Google Scholar 

  28. [28]

    S. Wu, Y. Du, S. Sun, Chem. Eng. J. 307, 189 (2017)

    CAS  Article  Google Scholar 

  29. [29]

    Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 22, 425 (2012)

    CAS  Article  Google Scholar 

  30. [30]

    Y. Zhou, H. Xie, C. Wang, Q. He, Q. Liu, Z. Muhammad, Y.A. Haleem, Y. Sang, S. Chen, L. Song, J. Phys. Chem. C 121, 15589 (2017)

    CAS  Article  Google Scholar 

  31. [31]

    J. Zhang, W. Kang, M. Jiang, Y. You, Y. Cao, T.W. Ng, D.Y. Yu, C.S. Lee, J. Xu, Nanoscale 9, 1484 (2017)

    CAS  Article  Google Scholar 

  32. [32]

    D. Zheng, H. Feng, X. Zhang, X. He, M. Yu, X. Lu, Y. Tong, Chem. Commun. 53, 3929 (2017)

    CAS  Article  Google Scholar 

  33. [33]

    X. Zhao, H.E. Wang, J. Cao, W. Cai, J. Sui, Chem. Commun. 53, 10723 (2017)

    CAS  Article  Google Scholar 

  34. [34]

    Y. Sun, X. Hu, W. Luo, Y. Huang, ACS Nano 5, 7100 (2011)

    CAS  Article  Google Scholar 

  35. [35]

    X. Zhao, H. Wang, X. Chen, J. Cao, Y. Zhao, Z. Garbe Neale, W. Cai, J. Sui, G. Cao, Energy Storage Mater. 11, 161 (2018)

    Article  Google Scholar 

  36. [36]

    Q. Hao, G. Cui, Y. Zhao, Z. Bakenov, Nanomaterials (Basel) 9, 1256 (2019)

    CAS  Article  Google Scholar 

  37. [37]

    F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, Adv. Funct. Mater. 27, 1700522 (2017)

    Article  CAS  Google Scholar 

  38. [38]

    J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 17881 (2013)

    CAS  Article  Google Scholar 

  39. [39]

    Y. Liu, Y. Xiao, F. Liu, P. Han, G. Qin, J. Mater. Chem. A 7, 26818 (2019)

    CAS  Article  Google Scholar 

  40. [40]

    X. Zhao, H. Wang, R.C. Massé, J. Cao, J. Sui, J. Li, W. Cai, G. Cao, J. Mater. Chem. A 5, 7394 (2017)

    CAS  Article  Google Scholar 

  41. [41]

    H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, X. Hao, N. Zhao, H. Geng, Z. Dai, Q. Yan, J. Xu, Nano Energy 33, 168 (2017)

    CAS  Article  Google Scholar 

  42. [42]

    Y. Wang, Z. Huang, Y. Wang, J. Mater. Chem. A 3, 21314 (2015)

    CAS  Article  Google Scholar 

  43. [43]

    H. Zhang, K. Wang, X. Wu, Y. Jiang, Y. Zhai, C. Wang, X. Wei, J. Chen, Adv. Funct. Mater. 24, 3399 (2014)

    CAS  Article  Google Scholar 

  44. [44]

    L.C. Yang, W. Sun, Z.W. Zhong, J.W. Liu, Q.S. Gao, R.Z. Hu, M. Zhu, J. Power Sour. 306, 78 (2016)

    CAS  Article  Google Scholar 

  45. [45]

    W. Devina, J. Hwang, J. Kim, Chem. Eng. J. 345, 1 (2018)

    CAS  Article  Google Scholar 

  46. [46]

    Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun, S.X. Dou, Adv. Energy Mater. 6, 1501835 (2016)

    Article  CAS  Google Scholar 

  47. [47]

    T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9, 146 (2010)

    CAS  Article  Google Scholar 

  48. [48]

    V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)

    CAS  Article  Google Scholar 

  49. [49]

    T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J. Am. Chem. Soc. 131, 1802 (2009)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Haosen Fan or Shengjun Lu.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Liu, X., Huang, Z. et al. Electrochemical and Pseudocapacitive Analysis of Rod-Like MoO2@MoSe2@NC Heterostructures for High-Performance Lithium Ion Batteries. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-021-01207-3

Download citation

Keywords

  • Mo-MOF
  • MoO2@MoSe2@NC
  • MoSe2 nanosheet
  • Heterostructure
  • Lithium ion batteries (LIBs)