Abstract
A micro-scale rod-like heterostructure derived from molybdenum-based metal organic framework (Mo-MOF) has been successfully prepared via subsequent annealing treatment, which assembled from N-doped carbon encapsulated MoSe2 nanosheets grown on the surface of MoO2 microrod (named as MoO2@MoSe2@NC). For this novel heterostructure, the MoO2 nanoparticles assembled into rod core not only serve as supporting substrate for facilitating the fast kinetics of Li+ cations inside the electrode but also protect the MoSe2 structure from restacking in the charge/discharge process. Moreover, the outer-layered MoSe2 nanosheets enable the fast lithium ion movement owing to its large interlayer spacing. Moreover, this unique rod-like core–shell structure composite could further effectively alleviate the structural strains caused by large volume expansion during charge/discharge process, thus leading to stable electrochemical performance when evaluated as anode material for lithium ion batteries. Electrochemical testing exhibits that the MoO2@MoSe2@NC heterostructure presents highly reversible capacity of 468 mAh g−1 at 0.5 A g−1 and superior rate capability (318 mAh g−1 even at 5.0 A g−1), which is attributed to the synergistic effect of N-doped carbon encapsulated MoSe2 nanosheets and MoO2 nanoparticles.
This is a preview of subscription content, access via your institution.







References
- [1]
X. Yang, Y. Wang, B. Hou, H. Liang, X. Zhao, H. Fan, G. Wang, X. Wu, Acta Metall Sin.-Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01001-7
- [2]
S. Mohapatra, S.V. Nair, A.K. Rai, Acta Metall Sin.-Engl. Lett. 31, 164 (2018)
- [3]
X. Chen, G. Gao, Z. Wu, J. Xiang, X. Li, G. Guan, K. Zhang, RSC Adv. 9, 37556 (2019)
- [4]
Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, Nano Lett. 16, 3321 (2016)
- [5]
B. Hu, L. Mai, W. Chen, F. Yang, ACS Nano 3, 478 (2009)
- [6]
Y. Lin, Z. Qiu, D. Li, S. Ullah, Y. Hai, H. Xin, W. Liao, B. Yang, H. Fan, J. Xu, C. Zhu, Energy Storage Mater. 11, 67 (2018)
- [7]
H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, N. Zhao, Y. Zheng, C. Du, Z. Dai, Q. Yan, J. Xu, Energy Storage Mater. 10, 48 (2018)
- [8]
J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, J. Energy Chem. 33, 100 (2019)
- [9]
H. Wang, X. Wang, L. Wang, J. Wang, D. Jiang, G. Li, Y. Zhang, H. Zhong, Y. Jiang, J. Phys. Chem. C 119, 10197 (2015)
- [10]
P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Adv. Energy Mater. 8, 1703259 (2018)
- [11]
X. Li, M. Sun, S. Cheng, X. Ren, J. Zang, T. Xu, X. Wei, S. Li, Q. Chen, C. Shan, 2D Mater. 6, 035027 (2019)
- [12]
A. Eftekhari, Appl. Mater. Today 8, 1 (2017)
- [13]
T. Xiang, S. Tao, W. Xu, Q. Fang, C. Wu, D. Liu, Y. Zhou, A. Khalil, Z. Muhammad, W. Chu, Z. Wang, H. Xiang, Q. Liu, L. Song, ACS Nano 11, 6483 (2017)
- [14]
J. Maier, Nat. Mater. 4, 805 (2005)
- [15]
F. Xu, L. Wu, Q. Meng, M. Kaltak, J. Huang, J.L. Durham, M. Fernandez-Serra, L. Sun, A.C. Marschilok, E.S. Takeuchi, K.J. Takeuchi, M.S. Hybertsen, Y. Zhu, Nat. Commun. 8, 15400 (2017)
- [16]
X. Zhao, J. Sui, F. Li, H. Fang, H. Wang, J. Li, W. Cai, G. Cao, Nanoscale 8, 17902 (2016)
- [17]
C. Huang, S. Wu, A.M. Sanchez, J.J. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, Nat. Mater. 13, 1096 (2014)
- [18]
Z. Mao, H. Wang, D. Chao, R. Wang, B. He, Y. Gong, H. Fan, Small 33, 2001950 (2020)
- [19]
D. Xu, H. Wang, R. Qiu, Q. Wang, Z. Mao, Y. Jiang, R. Wang, B. He, Y. Gong, D. Li, X. Hu, Energy Storage Mater. 28, 91 (2020)
- [20]
R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang, R. Wang, B. He, Y. Gong, H. Fan, Adv. Energy Mater. 47, 2002741 (2020)
- [21]
H. Lu, K. Tian, L. Bu., X. Huang, X. Li, Y. Zhao, F. Wang, J. Bai, L. Gao, J. Zhao, J. Energy Chem. 55, 449 (2021).
- [22]
B. Hou, Y. Wang, D. Liu, Z. Gu, X. Feng, H. Fan, T. Zhang, C. Lü, X. Wu, Adv. Funct. Mater. 28, 1805444 (2018)
- [23]
H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, Angew. Chem. Int. Ed. Engl. 56, 12566 (2017)
- [24]
P. Martían-Zarza, J.M. Arrieta, M.C. Muñoz-Roca, P. Gili, J. Chem. Soc. Dalton Trans. 10, 1551 (1993)
- [25]
Z. Wang, T. Chen, W. Chen, K. Chang, L. Ma, G. Huang, D. Chen, J.Y. Lee, J. Mater. Chem. A 1, 2202 (2013)
- [26]
Y. Zhang, Q. Gong, L. Li, H. Yang, Y. Li, Q. Wang, Nano Res. 8, 1108 (2014)
- [27]
L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, Nanoscale 7, 5203 (2015)
- [28]
S. Wu, Y. Du, S. Sun, Chem. Eng. J. 307, 189 (2017)
- [29]
Y. Sun, X. Hu, W. Luo, Y. Huang, J. Mater. Chem. 22, 425 (2012)
- [30]
Y. Zhou, H. Xie, C. Wang, Q. He, Q. Liu, Z. Muhammad, Y.A. Haleem, Y. Sang, S. Chen, L. Song, J. Phys. Chem. C 121, 15589 (2017)
- [31]
J. Zhang, W. Kang, M. Jiang, Y. You, Y. Cao, T.W. Ng, D.Y. Yu, C.S. Lee, J. Xu, Nanoscale 9, 1484 (2017)
- [32]
D. Zheng, H. Feng, X. Zhang, X. He, M. Yu, X. Lu, Y. Tong, Chem. Commun. 53, 3929 (2017)
- [33]
X. Zhao, H.E. Wang, J. Cao, W. Cai, J. Sui, Chem. Commun. 53, 10723 (2017)
- [34]
Y. Sun, X. Hu, W. Luo, Y. Huang, ACS Nano 5, 7100 (2011)
- [35]
X. Zhao, H. Wang, X. Chen, J. Cao, Y. Zhao, Z. Garbe Neale, W. Cai, J. Sui, G. Cao, Energy Storage Mater. 11, 161 (2018)
- [36]
Q. Hao, G. Cui, Y. Zhao, Z. Bakenov, Nanomaterials (Basel) 9, 1256 (2019)
- [37]
F. Niu, J. Yang, N. Wang, D. Zhang, W. Fan, J. Yang, Y. Qian, Adv. Funct. Mater. 27, 1700522 (2017)
- [38]
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 17881 (2013)
- [39]
Y. Liu, Y. Xiao, F. Liu, P. Han, G. Qin, J. Mater. Chem. A 7, 26818 (2019)
- [40]
X. Zhao, H. Wang, R.C. Massé, J. Cao, J. Sui, J. Li, W. Cai, G. Cao, J. Mater. Chem. A 5, 7394 (2017)
- [41]
H. Fan, H. Yu, Y. Zhang, J. Guo, Z. Wang, H. Wang, X. Hao, N. Zhao, H. Geng, Z. Dai, Q. Yan, J. Xu, Nano Energy 33, 168 (2017)
- [42]
Y. Wang, Z. Huang, Y. Wang, J. Mater. Chem. A 3, 21314 (2015)
- [43]
H. Zhang, K. Wang, X. Wu, Y. Jiang, Y. Zhai, C. Wang, X. Wei, J. Chen, Adv. Funct. Mater. 24, 3399 (2014)
- [44]
L.C. Yang, W. Sun, Z.W. Zhong, J.W. Liu, Q.S. Gao, R.Z. Hu, M. Zhu, J. Power Sour. 306, 78 (2016)
- [45]
W. Devina, J. Hwang, J. Kim, Chem. Eng. J. 345, 1 (2018)
- [46]
Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun, S.X. Dou, Adv. Energy Mater. 6, 1501835 (2016)
- [47]
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9, 146 (2010)
- [48]
V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 7, 1597 (2014)
- [49]
T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J. Am. Chem. Soc. 131, 1802 (2009)
Author information
Affiliations
Corresponding authors
Additional information
Available online at http://link.springer.com/journal/40195.
Rights and permissions
About this article
Cite this article
Qin, Z., Liu, X., Huang, Z. et al. Electrochemical and Pseudocapacitive Analysis of Rod-Like MoO2@MoSe2@NC Heterostructures for High-Performance Lithium Ion Batteries. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-021-01207-3
Received:
Revised:
Accepted:
Published:
Keywords
- Mo-MOF
- MoO2@MoSe2@NC
- MoSe2 nanosheet
- Heterostructure
- Lithium ion batteries (LIBs)