Microstructure and Improved Thermal Shock Behaviour of an In Situ Formed Metal-Enamel Interlocking Coating

Abstract

A novel metal-enamel interlocking coating was designed and prepared in situ by co-deposition of Ni-enamel composite layer and subsequent air spray of enamel with 10 wt% nanoscale Ni. During the firing process, the external enamel layer was melted and jointed with the enamel particles at the upper part of the Ni-plating layer to form the enamel pegs. Thermal shock tests of pure enamel, enamel with 10 wt% Ni composite and metal-enamel interlocking coatings were conducted at 600 °C in water and static air. The results indicated that the metal-enamel interlocking showed superior thermal shock resistance to both pure enamel and enamel with 10 wt% Ni composite coatings. The enhanced performance was mainly attributed to the advantageous effects of mechanical interlocking of the enamel pegs formed at the enamel/Ni-plating interface. Meanwhile, during thermal shock test, big clusters formed by nanoscale Ni agglomerations were oxidised to be a Ni/NiO core–shell structure while small single nanoscale Ni grains were oxidised completely, which both improved the thermal shock resistance of enamel coating significantly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. [1]

    L. Hu, X. Wang, X.H. Yin, H. Liu, Q.S. Ma, Acta Metall. Sin. 54, 1767 (2018)

    CAS  Google Scholar 

  2. [2]

    X.Y. Zhong, X.Q. Wu, E.H. Han, Acta Metall. Sin. 47, 932 (2011)

    CAS  Google Scholar 

  3. [3]

    M. Yoshizawa, M. Igarashi, K. Moriguchi, A. Iseda, H.G. Armaki, K. Maruyama, Mater. Sci. Eng. A 510, 162 (2009)

    Article  Google Scholar 

  4. [4]

    D.M. Gorman, A.T. Fry, Oxid. Met. 88, 435 (2017)

    CAS  Article  Google Scholar 

  5. [5]

    M. Lukaszewicz, N.J. Simms, T. Dudziak, J.R. Nicholls, Oxid. Met. 79, 473 (2013)

    CAS  Article  Google Scholar 

  6. [6]

    D. Laverde, T. Gomez-Acebo, F. Castro, Corros. Sci. 46, 613 (2004)

    CAS  Article  Google Scholar 

  7. [7]

    M. Takeda, H. Kushida, T. Onishi, M. Toyama, F. Koizumi, S. Fujimoto, Oxid. Met. 73, 1 (2010)

    CAS  Article  Google Scholar 

  8. [8]

    L.K. Wu, J.J. Wu, W.Y. Wu, H.J. Yan, M.Y. Jiang, F.H. Cao, Corros. Sci. 174, 108827 (2020)

    CAS  Article  Google Scholar 

  9. [9]

    Q. Wang, W.Y. Wu, M.Y. Jiang, F.H. Cao, H.X. Wu, D.B. Sun, H.Y. Yu, L.K. Wu, Surf. Coat. Technol. 381, 125126 (2020)

    CAS  Article  Google Scholar 

  10. [10]

    C.Y. Jiang, Y.F. Yang, Z.Y. Zhang, Z.B. Bao, S.L. Zhu, F.H. Wang, Acta Metall. Sin. 54, 581 (2018)

    CAS  Google Scholar 

  11. [11]

    M.J. Li, X.F. Sun, H.R. Guan, X.X. Jiang, Z.Q. Hu, Acta Metall. Sin. 40, 773 (2004)

    CAS  Google Scholar 

  12. [12]

    N. Wollschläger, M. Nofz, I. Dörfel, W. Schulz, R. Sojref, A. Kranzmann, Mater. Corros. 69, 492 (2018)

    Article  Google Scholar 

  13. [13]

    M. Nofz, I. Dörfel, R. Sojref, N. Wollschläger, M. Mosquera-Feijoo, W. Schulz, A. Kranzmann, Oxid. Met. 89, 453 (2018)

    CAS  Article  Google Scholar 

  14. [14]

    Y.M. Liao, M. Feng, M.H. Chen, Z. Geng, Y. Liu, F.H. Wang, S.L. Zhu, Acta Metall. Sin. 55, 229 (2019)

    CAS  Google Scholar 

  15. [15]

    Y. Xiong, S. Zhu, F. Wang, Corros. Sci. 50, 15 (2008)

    CAS  Article  Google Scholar 

  16. [16]

    K. Chen, M. Chen, Z. Yu, Q. Wang, S. Zhu, F. Wang, Corros. Sci. 127, 201 (2017)

    CAS  Article  Google Scholar 

  17. [17]

    Z. Yu, M. Chen, K. Chen, D. Xie, S. Zhu, F. Wang, Corros. Sci. 148, 228 (2019)

    CAS  Article  Google Scholar 

  18. [18]

    Y. Liao, B. Zhang, M. Chen, M. Feng, J. Wang, S. Zhu, F. Wang, Corros. Sci. 167, 108526 (2020)

    CAS  Article  Google Scholar 

  19. [19]

    M. Feng, M.H. Chen, Z.D. Yu, Z.B. Lv, S.L. Zhu, F.H. Wang, Acta Metall. Sin. 53, 1636 (2017)

    Google Scholar 

  20. [20]

    C.A. Guo, M.H. Chen, Y.M. Liao, B. Su, D.B. Xie, S.L. Zhu, F.H. Wang, Acta Metall. Sin. 54, 1825 (2018)

    CAS  Google Scholar 

  21. [21]

    M. Chen, S. Zhu, F. Wang, Phys. B-Condens. Matter. 413, 15 (2013)

    CAS  Article  Google Scholar 

  22. [22]

    J.W. McBain, J. Phys. Chem. 29, 188 (1925)

    CAS  Article  Google Scholar 

  23. [23]

    W. Brockmann, J. Adhes. 29, 53 (1989)

    CAS  Article  Google Scholar 

  24. [24]

    C.M.H. Hagen, A. Hognestad, O.O. Knudsen, K. Sorby, Prog. Org. Coat. 130, 17 (2019)

    CAS  Article  Google Scholar 

  25. [25]

    J.P.B. van Dam, S.T. Abrahami, A. Yilmaz, Y. Gonzalez-Garcia, H. Terryn, J.M.C. Mol, Int. J. Adhes. Adhes. 96, 102450 (2020)

    Article  Google Scholar 

  26. [26]

    K. Chen, M. Chen, Q. Wang, S. Zhu, F. Wang, Int. J. Appl. Glass Sci. 9, 70 (2018)

    CAS  Article  Google Scholar 

  27. [27]

    I.W. Donald, B.L. Metcalfe, L.A. Gerrard, J. Am. Ceram. Soc. 91, 715 (2008)

    CAS  Article  Google Scholar 

  28. [28]

    F.S. Shieu, K.C. Lin, J.C. Wong, Ceram. Int. 25, 27 (1999)

    CAS  Article  Google Scholar 

  29. [29]

    J. Yang, L. Wang, D. Li, X. Zhong, H. Zhao, S. Tao, J. Therm. Spray Technol. 26, 890 (2017)

    CAS  Article  Google Scholar 

  30. [30]

    S.J. Bull, Oxid. Met. 49, 1 (1998)

    CAS  Article  Google Scholar 

  31. [31]

    A. Agüero, R. Muelas, M. Gutiérrez, R. Van Vulpen, S. Osgerby, J.P. Banks, Surf. Coat. Technol. 201, 6253 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Excellent Youth Foundation of Liaoning Province (No. 2019-YQ-03), the CNPC Science and Technology Development Project (Nos. 2019B-4013 and 2019A-3911), the National Key R&D Program of China (Nos. 2019YFF0217500 and 2016ZX05022-055), the Science Fund for Distinguished Young Scholars of Shaanxi Province and the Ministry of Industry and Information Technology Project (No. MJ-2017-J-99).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chengyang Jiang.

Additional information

Available online at https://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, C., Jiang, C. et al. Microstructure and Improved Thermal Shock Behaviour of an In Situ Formed Metal-Enamel Interlocking Coating. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-021-01204-6

Download citation

Keywords

  • Enamel
  • Interlocking
  • Thermal shock
  • Nanoscale Ni