Raman Spectroscopy of Layered Compound YbB2C2

Abstract

REB2C2 (RE = Y and lanthanides) compounds have gained attention for their unique layered crystal structure. However, there have been few reports about Raman spectroscopy of REB2C2 compounds up to now. Here, the Raman spectrum of YbB2C2 is obtained by a micro-Raman spectroscope and the first-principles calculations. Raman active vibrational modes of YbB2C2 are confirmed as A1g (627 and 1311 cm−1), B1g (944 and 1172 cm−1), B2g (330 and 885 cm−1) and Eg (357 and 530 cm−1). Atomic displacements of these modes are different, they can be divided into two groups: A1g, B1g and B2g correspond to ring breathing (δin, in the plane) of B2C2 layer; Eg is due to ring deformation (δoop, out of the plane) of B2C2 layer. These results are helpful to understand the individual structure of REB2C2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    V. Babizhetskyy, Visnyk Lviv Univ. Ser. Chem. 57, 77 (2016)

    Google Scholar 

  2. [2]

    V. Babizhetskyy, J. Bauer, R. Gautier, K. Hiebl, A. Simon, J.F. Halet, Including Actinides (Elsevier, Amsterdam, 2018), p. 145

    Google Scholar 

  3. [3]

    J. Bauer, O. Bars, Acta Crystallogr. Sect. B: Struct. Sci. 36, 1540 (1980)

    Article  Google Scholar 

  4. [4]

    J. Bauer, J.F. Halet, J.Y. Saillard, Coord. Chem. Rev. 178, 723 (1998)

    Article  Google Scholar 

  5. [5]

    K. Kaneko, K. Ohoyama, H. Onodera, Y. Yamaguchi, J. Phys. Soc. Jpn. 69, 3762 (2000)

    CAS  Article  Google Scholar 

  6. [6]

    S. Khmelevskyi, P. Mohn, J. Redinger, H. Michor, Supercond. Sci. Technol. 18, 422 (2005)

    CAS  Article  Google Scholar 

  7. [7]

    K. Ohoyama, K. Kaneko, K. Indoh, H. Yamauchi, A. Tobo, H. Onodera, Y. Yamaguchi, J. Phys. Soc. Jpn. 70, 3291 (2001)

    CAS  Article  Google Scholar 

  8. [8]

    T. Onimaru, H. Onodera, K. Ohoyama, H. Yamauchi, Y. Yamaguchi, J. Phys. Soc. Jpn. 68, 2287 (1999)

    CAS  Article  Google Scholar 

  9. [9]

    Y. Yang, T. Hong, Phys. B 525, 154 (2017)

    CAS  Article  Google Scholar 

  10. [10]

    M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000)

    CAS  Article  Google Scholar 

  11. [11]

    G.W. Bentzel, M. Naguib, N.J. Lane, S.C. Vogel, V. Presser, S. Dubois, J. Lu, L. Hultman, M.W. Barsoum, E.N. Caspi, J. Am. Ceram. Soc. 99, 2233 (2016)

    CAS  Article  Google Scholar 

  12. [12]

    P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, Thin Solid Films 518, 1851 (2010)

    CAS  Article  Google Scholar 

  13. [13]

    M. Sokol, V. Natu, S. Kota, M.W. Barsoum, Trends Chem. 1, 210 (2019)

    CAS  Article  Google Scholar 

  14. [14]

    T. Sakai, G.-Y. Adachi, J. Shiokawa, J. Less Common Met. 84, 107 (1982)

    CAS  Article  Google Scholar 

  15. [15]

    X. Rocquefelte, S.E. Boulfelfel, M. Benahia, J. Bauer, J.Y. Saillard, J.F. Halet, Angew. Chem.-Int. Edit. 44, 7542 (2005)

    CAS  Article  Google Scholar 

  16. [16]

    T. Sakai, G. Adachi, J. Shiokawa, Solid State Commun. 40, 445 (1981)

    CAS  Article  Google Scholar 

  17. [17]

    K. Hirota, N. Oumi, T. Matsumura, H. Nakao, Y. Wakabayashi, Y. Murakami, Y. Endoh, Phys. Rev. Lett. 84, 2706 (2000)

    CAS  Article  Google Scholar 

  18. [18]

    G. Zhao, dissertation, University of Chinese Academy of Sciences, 2017

  19. [19]

    G. Zhao, J. Chen, Y. Li, M. Li, Scr. Mater. 124, 86 (2016)

    CAS  Article  Google Scholar 

  20. [20]

    A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    CAS  Article  Google Scholar 

  21. [21]

    Y.R. Hu, J.K. Liang, A.S. Myerson, L.S. Taylor, Ind. Eng. Chem. Res. 44, 1233 (2005)

    CAS  Article  Google Scholar 

  22. [22]

    V. Presser, M. Naguib, L. Chaput, A. Togo, G. Hug, M.W. Barsoum, JRSp 43, 168 (2012)

    CAS  Google Scholar 

  23. [23]

    G. Schoukens, K. De Clerck, Poly 46, 845 (2005)

    CAS  Article  Google Scholar 

  24. [24]

    M. Zolfaghari, Phys. B 555, 1 (2019)

    CAS  Article  Google Scholar 

  25. [25]

    X. Zhang, Q.H. Tan, J.B. Wu, W. Shi, P.H. Tan, Nanoscale 8, 6435 (2016)

    CAS  Article  Google Scholar 

  26. [26]

    M.S. Dresselhaus, A. Jorio, R. Saito, in Annual Review of Condensed Matter Physics. ed. by J.S. Langer (Wiley, Hoboken, 2010), p. 89

    Google Scholar 

  27. [27]

    M.S. Dresselhaus, A. Jorio, A.G. Souza, R. Saito, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368, 5355 (2010)

    CAS  Article  Google Scholar 

  28. [28]

    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    CAS  Article  Google Scholar 

  29. [29]

    O.D. Leaffer, S. Gupta, M.W. Barsoum, J.E. Spanier, J. Mater. Res. 22, 2651 (2007)

    CAS  Article  Google Scholar 

  30. [30]

    J.E. Spanier, S. Gupta, M. Amer, M.W. Barsoum, Phys. Rev. B 71, 012103 (2005)

    Article  Google Scholar 

  31. [31]

    W. Ben Nasr, K. Karoui, A. Bulou, A. Ben Rhaiem, Phys. E 93, 339 (2017)

    CAS  Article  Google Scholar 

  32. [32]

    Y.J. Sun, Q.H. Tan, X.L. Liu, Y.F. Gao, J. Zhang, J. Phys. Chem. Lett. 10, 3087 (2019)

    CAS  Article  Google Scholar 

  33. [33]

    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    CAS  Google Scholar 

  34. [34]

    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    CAS  Article  Google Scholar 

  35. [35]

    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    CAS  Article  Google Scholar 

  36. [36]

    B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    CAS  Article  Google Scholar 

  37. [37]

    Y. Zhou, H. Xiang, X. Wang, W. Sun, F.-Z. Dai, Z. Feng, J. Mater. Sci. Technol. 33, 1044 (2017)

    CAS  Article  Google Scholar 

  38. [38]

    Y.F. Li, B. Xiao, L. Sun, X.Z. Wang, Y.M. Gao, Y.R. Wang, Comput. Mater. Sci. 134, 67 (2017)

    CAS  Article  Google Scholar 

  39. [39]

    H.M. Badawi, W. Förner, A.A. Al-Saadi, J. Mol. Struct. 938, 41 (2009)

    CAS  Article  Google Scholar 

  40. [40]

    M.M. Oliva, G. Hennrich, J. Casado, J.T. López Navarrete, J. Mol. Struct. 369, 834–836 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Contract Nos. 50802099 and 51072201. The authors gratefully thank Shaofan Ge from School of Materials Science and Engineering, University of Science and Technology of China for his linguistic assistance during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jixin Chen.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, J., Wang, J. et al. Raman Spectroscopy of Layered Compound YbB2C2. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-020-01181-2

Download citation

Keywords

  • YbB2C2
  • Layered compound
  • Raman spectroscopy
  • First-principles calculations
  • Vibrational modes