Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals

Abstract

Two types of 316 butt welds with carbon contents of 0.016% and 0.062% have been produced using the gas tungsten arc welding process. The δ-ferrite content decreased from 7.2 to 2.8% in volume as the carbon content increased. The creep-rupture strength and creep ductility of the two types of weld metals have been measured at 550 ℃ over the stress range of 290–316 MPa and at 600 ℃ over 230–265 MPa. The microstructure change and precipitation behavior of the weld metals were observed and related to the creep rupture properties. The creep rupture strength of the C2 (0.062% C) weld metal was higher than that of the C1 (0.016% C) weld metal at both 550 ℃ and 600 ℃. At 550 ℃, as the decrease in the applied stress, the difference of the creep-rupture life between the two weld metals diminished due to the higher depletion rate of carbon by precipitation of M23C6 in the C2 weld metal, while at 600 ℃, the difference enlarged due to the massive precipitation of σ phase and extensive crack formation and propagation along σ/austenite boundaries in the C1 weld metal. For both the C1 and C2 weld metal, the decrease in ductility was adverse with the transformation percentage and related to products of the δ-ferrite transformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. [1]

    S.L. Mannan, S.C. Chetal, B. Raj, S.B. Bhoje, Trans. Indian Inst. Met. 56, 155 (2003)

    CAS  Google Scholar 

  2. [2]

    W.T. Delong, Weld. Res. Suppl. 53, 273 (1974)

    Google Scholar 

  3. [3]

    J.A. Brooks, A.W. Thompson, J.C. Williams, Weld. Res. Suppl. 63, 13 (1984)

    Google Scholar 

  4. [4]

    L. Zhao, S. Wei, D. Wu, D. Gao, S. Lu, J. Mater. Sci. Technol. 57, 33 (2020)

    Article  Google Scholar 

  5. [5]

    B. Raj, K.B.S. Rao, J. Nucl. Mater. 386–388, 935 (2009)

    Article  Google Scholar 

  6. [6]

    R.A. Farrar, R.G. Thomas, J. Mater. Sci. 18, 3461 (1983)

    CAS  Article  Google Scholar 

  7. [7]

    R.G. Thomas, R.D. Nicholson, R.A. Farrar, Mater. Sci. Technol. 11, 61 (1984)

    CAS  Google Scholar 

  8. [8]

    R.A. Farrar, J. Mater. Sci. 22, 363 (1987)

    CAS  Article  Google Scholar 

  9. [9]

    B.A. Senior, J. Mater. Sci. 25, 45 (1990)

    CAS  Article  Google Scholar 

  10. [10]

    T.P.S. Gill, M. Vijayalakshmi, J.B. Gnanamoorthy, K.A. Padmanabhan, Weld. J. 65, 122 (1986)

    Google Scholar 

  11. [11]

    E.J. Chun, H. Baba, K. Nishimoto, K. Saida, Mater. Charact. 86, 152 (2013)

    CAS  Article  Google Scholar 

  12. [12]

    J.M. Vitek, S.A. David, Scr. Mater. 19, 23 (1985)

    CAS  Google Scholar 

  13. [13]

    S.R. Keown, R.G. Thomas, Mater. Sci. Technol. 15, 386 (1981)

    CAS  Google Scholar 

  14. [14]

    H. Shaikh, H.S. Khatak, S.K. Seshadri, J.B. Gnanamoorthy, P. Rodriguez, Metall. Mater. Trans. A 26, 1859 (1995)

    Article  Google Scholar 

  15. [15]

    S. Wei, L. Zhao, D. Gao, S. Lu, Mater. Sci. Technol. 36, 793 (2020)

    CAS  Article  Google Scholar 

  16. [16]

    T. Sakthivel, M. Vasudevan, K. Laha, P. Parameswaran, K.S. Chandravathi, M.D. Mathew, A.K. Bhaduri, Mater. Sci. Eng. A 528, 6971 (2011)

    CAS  Article  Google Scholar 

  17. [17]

    M.D. Mathew, G. Sasikala, S.L. Mannan, P. Rodriguez, J. Eng. Mater. Technol. 115, 163 (1993)

    CAS  Article  Google Scholar 

  18. [18]

    N. Suutala, T. Takalo, T. Moisio, Metall. Trans. A 10, 512 (1979)

    Article  Google Scholar 

  19. [19]

    J.C. Lippold, W.F. Savage, Weld. J. 58, 362 (1979)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Opening Foundation of CAS Key Laboratory of Nuclear Material and Safety Assessment under Grant No. 2019NMSAKF04 and the China Institute of Atomic Energy under Grant No. 2016-DGB-I-KYSC-0024.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shanping Lu.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wei, S., Gao, D. et al. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals. Acta Metall. Sin. (Engl. Lett.) (2021). https://doi.org/10.1007/s40195-020-01180-3

Download citation

Keywords

  • 316 stainless steel weld metal
  • Creep rupture properties
  • δ-ferrite
  • M 23C6
  • σ phase