Thermal Properties of Ni–Cr–Si–B–Fe Based Interlayer Material and Its Application in TLP Bonding of IN 718 Superalloy

Abstract

A new Ni–Cr–Si–B–Fe filler material is prepared for transient liquid-phase (TLP) bonding of Inconel 718 superalloy by mechanical alloying technique. The melting temperature range of the filler material and its activation energy of melting are determined by differential scanning calorimetry technique. The activation energy and melting temperature of the alloy powder decrease with increasing milling time. Inconel 718 alloy was joined via TLP by using the newly developed filler material. The effect of TLP bonding temperature and time on microstructural evolution and mechanical properties of the joint was investigated. Three distinct microstructural regions were observed in the bonding area: isothermal solidification zone consisting of a single-phase solid solution, diffusion affected zone consisting of extensive diffusion-induced precipitates of metallic boride, and unaffected base material. The ultimate shear strength and microhardness of the TLP-bonded joint increase with bonding time and temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. [1]

    J. Gordine, Weld. Res. Supp. 50, 480 (1971)

    Google Scholar 

  2. [2]

    K.D. Ramkumara, S. Deva, K.V.P. Prabhakarb, R. Rajendranc, K.G. Mugundana, S. Narayanana, J. Mater. Process. Technol. 266, 52 (2019)

    Article  Google Scholar 

  3. [3]

    A. Lingenfelter, Welding of Inconel alloy 718: A Historical Overview, ed. by E.A. Loria (IMS, 1989) p. 673.

  4. [4]

    J. F. Radavich, The Pysical Metallurgy of Cast and Wrought Alloy 718, ed. by E.A. Lopia (IMS, 1989) p. 229.

  5. [5]

    N. Anbarasan, B.K. Gupta, S. Prakash, P. Muthukumar, R. Oyyaravelu, R.J.F. Kumar, S. Jerome, Mater. Today: Proc. 5, 7716 (2018)

    CAS  Google Scholar 

  6. [6]

    R.G. Thompson, J. Miner. Metal. Mater. Soc. 40, 44 (1988)

    CAS  Article  Google Scholar 

  7. [7]

    W. Lin, J.C. Lippold, W.A. Baeslack, Weld. J. 72, 135 (1993)

    CAS  Google Scholar 

  8. [8]

    R.G. Thompson, D.E. Mayo, B. Radhakrishnan, Metall. Trans. A 22, 557 (1991)

    Article  Google Scholar 

  9. [9]

    F. Jalilian, M. Jahazi, R.A.L. Drew, Mat. Sci. Eng. A 423, 269 (2006)

    Article  Google Scholar 

  10. [10]

    G.O. Cook, C.D. Sorensen, J. Mater. Sci. 46, 5305 (2011)

    CAS  Article  Google Scholar 

  11. [11]

    W.D.M. Donald, T.W. Egar, Mater. Sci. 22, 23 (1992)

    Google Scholar 

  12. [12]

    W.F. Gale, D.A. Butts, Sci. Technol. Weld. Join. 9, 283 (2004)

    CAS  Article  Google Scholar 

  13. [13]

    J.K. Kim, H.J. Park, D.N. Shim, D.J. Kim, J. Manuf. Process. 25, 60 (2017)

    Article  Google Scholar 

  14. [14]

    R. Bakhtiari, A. Ekrami, Mater. Char. 66, 38 (2012)

    CAS  Article  Google Scholar 

  15. [15]

    M. Pouranvari, A. Ekrami, Mater. Des. 50, 694 (2013)

    CAS  Article  Google Scholar 

  16. [16]

    M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Mat. Sci. Eng. A 447, 125 (2007)

    Article  Google Scholar 

  17. [17]

    W.D.M. Donald, T.W. Egar, Miner. Met. Mater. Soc. 93 (1992).

  18. [18]

    M.W. Tseng, D.B. Williams, K.K. Soni, R. Levi-Setti, J. Mater. Sci. 34, 5187 (1999)

    CAS  Article  Google Scholar 

  19. [19]

    A.D. Jamaloei, A. Khorram, A. Jafari, J. Manuf. Process. 29, 447 (2017)

    Article  Google Scholar 

  20. [20]

    I. Tuah-Poku, M. Dollar, T.B. Massalski, Metall. Trans. A 19, 675 (1988)

    Article  Google Scholar 

  21. [21]

    L. Lan, Z. Ren, J.Y.Z. Yang, Y. Zhong, Mater. Lett. 121, 223 (2014)

    CAS  Article  Google Scholar 

  22. [22]

    A.T. Egbewande, C. Chukwukaeme, O.A. Ojo, Mater. Charact. 59, 1051 (2008)

    CAS  Article  Google Scholar 

  23. [23]

    D.C. Murray, S.F. Corbin, J. Mat. Pro. Technol. 248, 92 (2017)

    Article  Google Scholar 

  24. [24]

    M. Pouranvari, A. Ekrami, A.H. Kokabi, Sci. Technol. Weld. Join. 19, 105 (2014)

    CAS  Article  Google Scholar 

  25. [25]

    S. Shakerin, H. Omidvar, S.E. Mirsalehi, Mater. Des. 89, 611 (2016)

    CAS  Article  Google Scholar 

  26. [26]

    F. Arhami, S.E. Mirsalehi, A. Sadeghian, J. Mat. Proc. Technol. 265, 219 (2019)

    CAS  Article  Google Scholar 

  27. [27]

    S.R. Cain, J.R. Wilcox, R. Venkatraman, Acta. Mater. 45, 701 (1997)

    CAS  Article  Google Scholar 

  28. [28]

    T.C. Illingworth, I.O. Golosnoy, T.W. Clyne, Mat. Sci. Eng. A 445, 493 (2007)

    Article  Google Scholar 

  29. [29]

    T. Ungár, Scr. Mater. 51, 777 (2004)

    Article  Google Scholar 

  30. [30]

    R. Gostariani, R. Ebrahimi, M.A. Asadabad, M.H. Paydar, Acta Metall. Sin. (Engl. Lett.) 31, 245 (2018)

    CAS  Article  Google Scholar 

  31. [31]

    M. SherifEl-Eskandarany, Mechanical alloying: Nanotechnology, Materials Science and Powder Metallurgy, 2nd edn. (Elsevier, London, 2015), p. 13

    Google Scholar 

  32. [32]

    C.C. Koch, Scr. Mater. 34, 21 (1996)

    CAS  Article  Google Scholar 

  33. [33]

    M. Mattonaia, D. Pawcenisb, S.D. Seppiaa, J. Łojewskab, E. Ribechinia, Bio-resource Technol. 270, 270 (2018)

    Article  Google Scholar 

  34. [34]

    R.L. Blaine, H.E. Kissinger, Thermochim. Acta 540, 1 (2012)

    CAS  Article  Google Scholar 

  35. [35]

    N.F. Shkodich, S.G. Vadchenko, A.A. Nepapushev, D.Y. Kovalev, I.D. Kovalev, S. Ruvimov, A. Rogachev, A.S. Mukasyan, J. Alloy. Compd. 741, 575 (2018)

    CAS  Article  Google Scholar 

  36. [36]

    L. Lu, M.O. Lai, S. Zhang, J. Mat. Proc. Technol. 67, 100 (1997)

    Article  Google Scholar 

  37. [37]

    S. Ghaderi, F. Karimzadeh, A. Ashrafi, J. Manuf. Proc. 49, 162 (2020)

    Article  Google Scholar 

  38. [38]

    M. Pouranvar, A. Ekrami, A.H. Kokabi, J. Alloy. Compd. 563, 43 (2013)

    Google Scholar 

  39. [39]

    N.R.J. Hynes, P.S. Velu, R. Kumar, M.K. Raja, Ceram. Int. 43, 7762 (2017)

    CAS  Article  Google Scholar 

  40. [40]

    X. Zhang, X. Shi, J. Wang, H. Li, K. Li, Y. Ren, Acta Metall. Sin. (Engl. Lett.) 27, 663 (2014)

    CAS  Article  Google Scholar 

  41. [41]

    M. Pouranvari, A. Ekrami, A.H. Kokabi, Mater. Sci. Eng. A 490, 229 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Department of Mechanical engineering and Central Instruments Facility of Indian Institute of Technology Guwahati, India-781039.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sukhomay Pal.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarai, U.K., Robi, P.S. & Pal, S. Thermal Properties of Ni–Cr–Si–B–Fe Based Interlayer Material and Its Application in TLP Bonding of IN 718 Superalloy. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01089-x

Download citation

Keywords

  • Transient liquid-phase (TLP) bonding
  • Kissinger plot
  • Mechanical alloying
  • Inconel 718