Electrospinning-Enabled Si/C Nanofibers with Dual Modification as Anode Materials for High-Performance Lithium-Ion Batteries

Abstract

In this work, silicon@reduced graphene oxide/pyrolytic carbon nanofibers (Si@RGO/C NFs) composite with double modified layer is prepared through electrospinning, stabilization and carbonization. In this composite, polyethylene oxide–polypropylene oxide–polyethylene oxide (P123, a non-ionic surfactant) is introduced as the dispersant, which can make silicon nanoparticles evenly dispersed in electrospinning solution to prevent it from agglomeration. Graphene modified layer can buffer the volumetric expansion of silicon nanoparticles, prevent direct contact between silicon and electrolyte as well as enhance the electrical conductivity. Moreover, carbon fibers synthesized by electrospinning can encapsulate silicon@graphene composite internally to form a double modified layer. This composite with double modified layer can further alleviate the volume change of silicon nanoparticles and avoid direct contact between silicon and electrolyte to form a stable interface. Owing to the above-mentioned merits, the Si@RGO/C NFs composite exhibits excellent cyclic stability and superior rate performance. Particularly, it maintains a specific capacity of 929 mA h g−1 with the retention ratio of 83.1% after 100 cycles at 0.5 A g−1 and delivers an outstanding rate capability of 1003 mA h g−1 at 2 A g−1.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. [1]

    A.R. Dehghani-Sanij, E. Tharumalingam, M. Dusseault, R. Fraser, Renew. Sustain. Energy Rev. 104, 192 (2019)

    Article  Google Scholar 

  2. [2]

    S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Nano Energy 60, 600 (2019)

    CAS  Article  Google Scholar 

  3. [3]

    K. Liu, K. Li, Q. Peng, C. Zhang, Front. Mech. Eng. 14, 47 (2019)

    Article  Google Scholar 

  4. [4]

    W. Pan, W. Peng, G. Yan, H. Guo, Z. Wang, X. Li, W. Gui, J. Wang, Energy Technol. 6, 2139 (2018)

    CAS  Article  Google Scholar 

  5. [5]

    Y. Lu, X. Hou, L. Miao, L. Li, R. Shi, L. Liu, J. Chen, Angew. Chem. Int. Ed. 58, 7020 (2019)

    CAS  Article  Google Scholar 

  6. [6]

    G. Chen, J. An, Y. Meng, C. Yuan, B. Matthews, F. Dou, L. Shi, Y. Zhou, P. Song, G. Wu, Nano Energy 57, 157 (2019)

    CAS  Article  Google Scholar 

  7. [7]

    F.A. Susai, D. Kovacheva, A. Chakraborty, T. Kravchuk, R. Ravikumar, M. Talianker, J. Grinblat, L. Burstein, Y. Kauffmann, D.T. Major, ACS Appl. Energy Mater. 2, 4521 (2019)

    CAS  Article  Google Scholar 

  8. [8]

    X. Yang, Y.Y. Wang, B.H. Hou, H.J. Liang, X.X. Zhao, H. Fan, G. Wang, X.L. Wu, Acta Metall. Sin. -Engl. Lett. (2020). https://doi.org/10.1007/s40195-020-01001-7

    Article  Google Scholar 

  9. [9]

    S. Mohapatra, S.V. Nair, A.K. Rai, Acta Metall. Sin. -Engl. Lett. 31, 164 (2018)

    CAS  Article  Google Scholar 

  10. [10]

    S. Liang, X. Wang, Y. Xia, S. Xia, E. Metwalli, B. Qiu, Q. Ji, S. Yin, S. Xie, K. Fang, L. Zheng, M. Wang, X. Zou, R. Li, Z. Liu, J. Zhu, P.M. Buschbaum, Y. Cheng, Acta Metall. Sin. -Engl. Lett. 31, 910 (2018)

    CAS  Article  Google Scholar 

  11. [11]

    M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, M. Fabretto, J. Power Sources 414, 48 (2019)

    CAS  Article  Google Scholar 

  12. [12]

    Y. Ma, H. Tang, Y. Zhang, Z. Li, X. Zhang, Z. Tang, J. Alloys Compd. 704, 599 (2017)

    CAS  Article  Google Scholar 

  13. [13]

    Y. Jin, Y. Tan, X. Hu, B. Zhu, Q. Zheng, Z. Zhang, G. Zhu, Q. Yu, Z. Jin, J. Zhu, ACS Appl. Mater. Interfaces 9, 18 (2017)

    Google Scholar 

  14. [14]

    S. Chen, Z. Chen, Y. Luo, M. Xia, C. Cao, Nanotechnology 28, 165404 (2017)

    Article  Google Scholar 

  15. [15]

    M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8, 74 (2016)

    CAS  Article  Google Scholar 

  16. [16]

    A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu, G. Wu, Nano Energy 27, 359 (2016)

    CAS  Article  Google Scholar 

  17. [17]

    H. Liu, Z. Shan, W. Huang, D. Wang, Z. Lin, Z. Cao, P. Chen, S. Meng, L. Chen, ACS Appl. Mater. Interfaces 10, 4715 (2018)

    CAS  Article  Google Scholar 

  18. [18]

    M. Wang, G. Wang, S. Wang, J. Zhang, J. Wang, W. Zhong, F. Tang, Z. Yang, J. Zheng, X. Li, Chem. Eng. J. 356, 895 (2019)

    CAS  Article  Google Scholar 

  19. [19]

    G.N. Yushin, I. Luzinov, B. Zdyrko, A. Magasinski, U.S. Patent No. 10,283,759, 7 May 2019

  20. [20]

    H. Cho, K. Kim, C.M. Park, G. Jeong, J. Power Sources 410, 25 (2019)

    Article  Google Scholar 

  21. [21]

    P. Li, J. Hwang, Y. Sun, ACS Nano 13, 2624 (2019)

    CAS  Google Scholar 

  22. [22]

    F. Wang, Z. Hu, L. Mao, J. Mao, J. Power Sources 450, 227692 (2020)

    CAS  Article  Google Scholar 

  23. [23]

    W. Tao, P. Wang, Y. You, K. Park, C. Wang, Y. Li, F. Cao, S. Xin, Nano Res. 12, 1739 (2019)

    CAS  Article  Google Scholar 

  24. [24]

    W. Wang, Y. Liang, Y. Kang, L. Liu, Z. Xu, X. Tian, W. Mai, H. Fu, H. Lv, K. Teng, Mater. Chem. Phys. 223, 762 (2019)

    CAS  Article  Google Scholar 

  25. [25]

    C. Lv, J. Yang, Y. Peng, X. Duan, J. Ma, Q. Li, T. Wang, Electrochim. Acta 297, 258 (2019)

    CAS  Article  Google Scholar 

  26. [26]

    K. Javed, M. Oolo, N. Savest, A. Krumme, Crit. Rev. Solid State Mater. Sci. 44, 427 (2019)

    CAS  Article  Google Scholar 

  27. [27]

    J. Xue, T. Wu, Y. Dai, Y. Xia, Chem. Rev. 119, 5298 (2019)

    CAS  Article  Google Scholar 

  28. [28]

    L. Zhang, S. Gbewonyo, A. Aboagye, A.D. Kelkar, (William Andrew Publishing, 2019), pp. 867–878

  29. [29]

    O. Pech, S. Maensiri, J. Alloys Compd. 781, 541 (2019)

    CAS  Article  Google Scholar 

  30. [30]

    L. Ji, X. Zhang, Energy Environ. Sci. 3, 124 (2010)

    CAS  Article  Google Scholar 

  31. [31]

    M. Wang, W. Song, J. Wang, L. Fan, Carbon 82, 337 (2015)

    CAS  Article  Google Scholar 

  32. [32]

    H. Tao, L. Fan, Y. Mei, X. Qu, Electrochem. Commun. 13, 1332 (2011)

    CAS  Article  Google Scholar 

  33. [33]

    C. Wu, M. Lu, H. Chuang, Polymer 46, 5929 (2005)

    CAS  Article  Google Scholar 

  34. [34]

    Z. Wu, J. Yang, B. Yu, B. Shi, C. Zhao, Z. Yu, Rare Met. 38, 832 (2019)

    CAS  Article  Google Scholar 

  35. [35]

    I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science 334, 75 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51974370), the Program of Huxiang Young Talents (No. 2019RS2002), the Innovation-Driven Project of Central South University (No. 2020CX027), and the Central Universities of Central South University (No. 2018zzts436).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiexi Wang.

Additional information

Available online at http://link.springer.com/journal/40195.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 200 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Guo, H., Wang, Z. et al. Electrospinning-Enabled Si/C Nanofibers with Dual Modification as Anode Materials for High-Performance Lithium-Ion Batteries. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01087-z

Download citation

Keywords

  • Lithium-ion batteries
  • Silicon/carbon composite
  • Surface modification
  • Graphene
  • Electrospinning