Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys


A series of AlxCrFe2Ni2Mo0.2 alloy consisting of FCC + BCC phases have been designed, and their as-cast microstructures and mechanical properties were also investigated with x ranging from 0.6 to 0.9. It was found that with the addition of Al element, the solidified structures changed from dendrite to columnar crystal then back to dendrite again. Moreover, the increased amount of BCC phase resulted in finer and more uniform microstructures of FCC [FeCrNi(Mo)] and BCC (Al–Ni) phases. Tensile yield strength and hardness of alloys showed a similar increasing trend as the volume fraction of BCC phase increased. Both strain hardening rate and strain hardening exponent were calculated to assess the tensile properties of the alloys. It was shown that Al0.6CrFe2Ni2Mo0.2 exhibited the most excellent and comprehensive mechanical properties due to its high work hardening ability and stable strain hardening rate. The product of strength and elongation of Al0.6CrFe2Ni2Mo0.2 reached up to 38.6 GPa%, which was higher than most of the reported as-cast high-entropy alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. [1]

    ASM, ASM Handbook, Vol. 1: Alloy Phase Diagrams, 10th edn. (ASM International, Materials Park, 1992), p. 949

    Google Scholar 

  2. [2]

    D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)

    CAS  Article  Google Scholar 

  3. [3]

    A.L. Greer, Nature 366, 303 (1993)

    Article  Google Scholar 

  4. [4]

    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26, 44 (2012)

    Article  CAS  Google Scholar 

  5. [5]

    Y.P. Cai, G.J. Wang, Y.J. Ma, Z.H. Cao, X.K. Meng, Scr. Mater. 162, 281 (2019)

    CAS  Article  Google Scholar 

  6. [6]

    A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, T. Shanmugasundaram, Scr. Mater. 161, 21 (2019)

    Article  CAS  Google Scholar 

  7. [7]

    S.J. Zheng, Z.B. Cai, J.B. Pu, C. Zeng, S.Y. Chen, R. Chen, L.P. Wang, Appl. Surf. Sci. 483, 870 (2019)

    CAS  Article  Google Scholar 

  8. [8]

    H.M. Daoud, A.M. Manzoni, N. Wanderka, U. Glatzel, JOM 67, 2271 (2015)

    CAS  Article  Google Scholar 

  9. [9]

    C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. (Engl. Lett.) 32, 1053 (2019)

    CAS  Article  Google Scholar 

  10. [10]

    Y.X. Zhuang, X.L. Zhang, X.Y. Gu, J. Alloys Compd. 743, 514 (2018)

    CAS  Article  Google Scholar 

  11. [11]

    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105 (2014)

    CAS  Article  Google Scholar 

  12. [12]

    K.B. Zhang, Z.Y. Fu, Intermetallics 22, 24 (2012)

    CAS  Article  Google Scholar 

  13. [13]

    S.G. Ma, Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012)

    CAS  Article  Google Scholar 

  14. [14]

    Y. Dong, Y.P. Lu, J.R. Kong, J.J. Zhang, T.J. Li, J. Alloys Compd. 573, 96 (2013)

    CAS  Article  Google Scholar 

  15. [15]

    J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hua, Mater. Sci. Eng. A 527, 6975 (2010)

    Article  CAS  Google Scholar 

  16. [16]

    T.T. Shun, L.Y. Chang, M.H. Shiu, Mater. Charact. 70, 63 (2012)

    CAS  Article  Google Scholar 

  17. [17]

    J.M. Zhu, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, Z.Q. Hu, J. Alloys Compd. 497, 52 (2010)

    CAS  Article  Google Scholar 

  18. [18]

    S. Guo, C.T. Liu, Prog. Nat. Sci. Mater. Int. 21, 434 (2011)

    Article  Google Scholar 

  19. [19]

    Y. Dong, Dissertation, Dalian University of Technology, 2016 (in Chinese)

  20. [20]

    L. Wang, J. Shen, Z. Shang, H.Z. Fu, Scr. Mater. 89, 2 (2014)

    Google Scholar 

  21. [21]

    L. Wang, C.L. Yao, J. Shen, Y.P. Zhang, T. Wang, H.X. Xu, L.H. Gao, G.J. Zhang, Mater. Sci. Eng. A 744, 596 (2019)

    Google Scholar 

  22. [22]

    D.G. Lee, S. Lee, Y.T. Lee, Mater. Sci. Eng. A 486, 21 (2008)

    Article  CAS  Google Scholar 

  23. [23]

    J.R. Yang, L.C. Chang, Mater. Sci. Eng. A 223, 158 (1997)

    Article  Google Scholar 

  24. [24]

    Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Acta Mater. 147, 217 (2018)

    Google Scholar 

  25. [25]

    Z.Y. Rao, X. Wang, J. Zhu, X.H. Chen, L. Wang, J.J. Si, Y.D. Wu, X.D. Hui, Intermetallics 77, 23 (2016)

    CAS  Article  Google Scholar 

  26. [26]

    B. Cai, B. Liu, S. Kabra, Y.Q. Wang, K. Yan, P.D. Lee, Y. Liu, Acta Mater. 127, 471 (2017)

    CAS  Article  Google Scholar 

  27. [27]

    W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Acta Mater. 116, 332 (2016)

    CAS  Article  Google Scholar 

  28. [28]

    X.Z. Gao, Y.P. Lu, B. Zhang, N.N. Liang, G.Z. Wu, G. Sha, J.Z. Liu, Y.H. Zhao, Acta Mater. 141, 59 (2017)

    CAS  Article  Google Scholar 

  29. [29]

    T. Xu, Y. Feng, Z. Jin, S. Song, D. Wang, Mater. Sci. Eng. A 550, 80 (2012)

    CAS  Article  Google Scholar 

  30. [30]

    Q. Li, T.W. Zhang, J.W. Qiao, S.G. Ma, D. Zhao, P. Lu, B. Xu, Z.H. Wang, Mater. Sci. Eng. A 767, 138424–138426 (2019)

    CAS  Article  Google Scholar 

  31. [31]

    M.V. Klimova, A.O. Semenyuk, D.G. Shaysultanov, G.A. Salishchev, S.V. Zherebtsov, N.D. Stepanov, J. Alloys Compd. 811, 15200–15206 (2019)

    Article  CAS  Google Scholar 

  32. [32]

    Z.R. Pei, Mater. Sci. Eng. A 737, 132 (2018)

    CAS  Article  Google Scholar 

  33. [33]

    W.Y. Huo, H. Zhou, F. Fang, X.J. Hu, Z.H. Xie, J.Q. Jiang, Mater. Sci. Eng. A 689, 368 (2017)

    Article  CAS  Google Scholar 

  34. [34]

    K. Rajan, J.B. Sande, J. Mater. Sci. 17, 769 (1982)

    CAS  Article  Google Scholar 

  35. [35]

    K. Rajan, Metall. Trans. A 13, 1161 (1982)

    CAS  Article  Google Scholar 

  36. [36]

    Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, T.J. Li, Mater. Lett. 169, 62 (2016)

    CAS  Article  Google Scholar 

  37. [37]

    W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60, 1 (2015)

    Article  CAS  Google Scholar 

  38. [38]

    S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, Y. Zhang, Intermetallics 54, 104 (2014)

    CAS  Article  Google Scholar 

  39. [39]

    G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591, 11 (2014)

    CAS  Article  Google Scholar 

  40. [40]

    C. Ng, S. Guo, J.H. Luan, Q. Wang, J. Lu, S.Q. Shi, C.T. Liu, J. Alloys Compd. 584, 530 (2014)

    Article  CAS  Google Scholar 

  41. [41]

    S.Z. Niu, H.C. Kou, T. Guo, Y. Zhang, J. Wang, J.S. Li, Mater. Sci. Eng. A 671, 82 (2016)

    CAS  Article  Google Scholar 

  42. [42]

    T.T. Zou, S.B. Ren, P.K. Liaw, Y. Zhang, Int. J. Miner. Metall. Mater. 20, 549 (2013)

    Article  CAS  Google Scholar 

  43. [43]

    X. Jin, Y.X. Liang, L. Zhang, J. Bi, Y. Zhou, B.S. Li, Mater. Sci. Eng. A 745, 137 (2019)

    CAS  Article  Google Scholar 

  44. [44]

    N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687, 59 (2016)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0403803) and the National Natural Science Foundation of China (Nos. 51771041 and 51901116).

Author information



Corresponding author

Correspondence to Zhiqiang Cao.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nie, Q., Liang, H., Qiao, D. et al. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01085-1

Download citation


  • High-entropy alloys
  • Mechanical properties
  • Microstructures
  • Strain hardening