In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties

Abstract

In situ TiC particles-reinforced FeCrNiCu high-entropy alloy matrix composites were prepared by vacuum induction melting method. The reaction mechanisms of the mixed powder (Ti, Cu and C) were analyzed, and the mechanical properties of resultant composites were determined. Cu4Ti were formed in the reaction of Cu and Ti when the temperature rose to 1160 K. With the temperature further increased to 1182 K, newly formed Cu4Ti reacted with C to give rise to TiC particles as reinforcement agents. The apparent activation energy for these two reactions was calculated to be 578.7 kJ/mol and 1443.2 kJ/mol, respectively. The hardness, tensile yield strength and ultimate tensile strength of the 15 vol% TiC/FeCrNiCu composite are 797.3 HV, 605.1 MPa and 769.2 MPa, respectively, representing an increase by 126.9%, 65.9% and 36.0% as compared to the FeCrNiCu high-entropy base alloy at room temperature. However, the elongation-to-failure is reduced from 21.5 to 6.1% with the formation of TiC particles. It was revealed that Orowan mechanism, dislocation strengthening and load-bearing effect are key factors responsible for a marked increase in the hardness and strength of the high-entropy alloy matrix composites.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Sun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    CAS  Article  Google Scholar 

  2. [2]

    P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74 (2004)

    CAS  Article  Google Scholar 

  3. [3]

    Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, J.W. Yeh, Mater. Sci. Eng. A 457, 77 (2007)

    Article  Google Scholar 

  4. [4]

    W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68, 526 (2013)

    CAS  Article  Google Scholar 

  5. [5]

    Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124, 143 (2017)

    CAS  Article  Google Scholar 

  6. [6]

    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    CAS  Article  Google Scholar 

  7. [7]

    Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 32, 932 (2019)

    CAS  Article  Google Scholar 

  8. [8]

    G. Qin, R.R. Chen, H.T. Zheng, H.Z. Fang, L. Wang, Y.Q. Su, J.J. Guo, H.Z. Fu, J. Mater. Sci. Technol. 35, 578 (2019)

    Article  Google Scholar 

  9. [9]

    K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Acta Mater. 164, 362 (2019)

    CAS  Article  Google Scholar 

  10. [10]

    D.X. Qiao, H. Jiang, W.N. Jiao, Y.P. Lu, Z.Q. Cao, T.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 925 (2019)

    CAS  Article  Google Scholar 

  11. [11]

    D. Yim, P. Sathiyamoorthi, S. Hong, H.S. Kim, J. Alloys Compd. 781, 389 (2019)

    CAS  Article  Google Scholar 

  12. [12]

    X.D. Sun, H.G. Zhu, J.L. Li, J.W. Huang, Z.H. Xie, Mater. Sci. Eng. A 743, 540 (2019)

    CAS  Article  Google Scholar 

  13. [13]

    H. Cheng, W. Chen, X.Q. Liu, Q.H. Tang, Y.C. Xie, P.Q. Dai, Mater. Sci. Eng. A 719, 192 (2018)

    CAS  Article  Google Scholar 

  14. [14]

    Z.Z. Fu, R. Koc, Mater. Sci. Eng. A 702, 184 (2017)

    CAS  Article  Google Scholar 

  15. [15]

    P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, Compos. Part B 147, 162 (2018)

    CAS  Article  Google Scholar 

  16. [16]

    Z. Szklarz, J. Lekki, P. Bobrowski, M.B. Szklarz, Ł. Rogal, Mater. Chem. Phys. 220, 449 (2018)

    Article  Google Scholar 

  17. [17]

    Ł. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, F. Czerwinski, J. Alloys Compd. 708, 344 (2017)

    CAS  Article  Google Scholar 

  18. [18]

    N.N. Zhao, Y.H. Xu, Y.H. Fu, Surf. Coat. Technol. 309, 1105 (2017)

    CAS  Article  Google Scholar 

  19. [19]

    X.F. Du, T. Gao, G.L. Liu, X.F. Liu, J. Alloys Compd. 695, 1 (2017)

    CAS  Article  Google Scholar 

  20. [20]

    Y.H. Liang, H.Y. Wang, Y.F. Yang, Y.Y. Wang, Q.C. Jiang, J. Alloys Compd. 452, 298 (2008)

    CAS  Article  Google Scholar 

  21. [21]

    R. Arroyave, T.W. Eagar, L. Kaufman, J. Alloys Compd. 351, 158 (2003)

    CAS  Article  Google Scholar 

  22. [22]

    Z.L. Yu, H.G. Zhu, J.W. Huang, J.L. Li, Z.H. Xie, Powder Technol. 320, 66 (2017)

    CAS  Article  Google Scholar 

  23. [23]

    F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi, Mater. Des. 61, 70 (2014)

    CAS  Article  Google Scholar 

  24. [24]

    R.L. Blaine, H.E. Kissinger, Thermochim. Acta 540(14), 1 (2012)

    CAS  Article  Google Scholar 

  25. [25]

    A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

    CAS  Article  Google Scholar 

  26. [26]

    X.G. Yang, Y. Zhou, R.H. Zhu, S.Q. Xi, C. He, H.J. Wu, Y. Gao, Acta Metall. Sin. (Engl. Lett.) (2019). https://doi.org/10.1007/s40195-019-00977-1

    Article  Google Scholar 

  27. [27]

    Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, J.W. Qiao, Acta Metall. Sin. (Engl. Lett.) 26, 277 (2013)

    Article  Google Scholar 

  28. [28]

    Y.X. Zhang, W.J. Liu, P.F. Xing, F. Wang, J.C. He, Acta Metall. Sin. (Engl. Lett.) 25, 124 (2012)

    Google Scholar 

  29. [29]

    H. Zhang, H. Zhu, J. Huang, J.L. Li, Z.H. Xie, Mater. Sci. Eng. A 719, 140 (2018)

    CAS  Article  Google Scholar 

  30. [30]

    C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. (Engl. Lett.) 32, 1053 (2019)

    CAS  Article  Google Scholar 

  31. [31]

    Y. Zhang, X. Wang, J. Li, Y. Huang, Y. Lu, X. Sun, Mater. Sci. Eng. A 724, 148 (2018)

    CAS  Article  Google Scholar 

  32. [32]

    F. Saba, F.M. Zhang, S.L. Liu, T.F. Liu, Compos. Part B 167, 7 (2019)

    CAS  Article  Google Scholar 

  33. [33]

    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, Acta Mater. 102, 187 (2016)

    CAS  Article  Google Scholar 

  34. [34]

    P.F. Zhou, D.H. Xiao, T.C. Yuan, Acta Metall. Sin. (Engl. Lett.) (2019). https://doi.org/10.1007/s40195-019-00962-8

    Article  Google Scholar 

  35. [35]

    Z. Zhang, D.L. Chen, Scr. Mater. 54, 1321 (2006)

    CAS  Article  Google Scholar 

  36. [36]

    H. Wu, S.R. Huang, C.Y. Zhu, H.G. Zhu, Z.H. Xie, Prog. Nat. Sci. Mater. Int. (2020). https://doi.org/10.1016/j.pnsc.2020.01.012

    Article  Google Scholar 

  37. [37]

    H. Li, X.M. Wang, L.H. Chai, H.J. Wang, Z.Y. Chen, Z.L. Xiang, T.N. Jin, Mater. Sci. Eng. A 720, 60 (2018)

    CAS  Article  Google Scholar 

  38. [38]

    X.D. Sun, H.G. Zhu, J.L. Li, J.W. Huang, Z.H. Xie, Mater. Chem. Phys. 220, 449 (2018)

    CAS  Article  Google Scholar 

  39. [39]

    D.B. Miraclea, O.N. Senkov, Acta Mater. 122, 448 (2017)

    Article  Google Scholar 

  40. [40]

    R.J. Arsenault, N. Shi, Mater. Sci. Eng. 81, 175 (1986)

    CAS  Article  Google Scholar 

  41. [41]

    Z. Zhang, D.L. Chen, Mater. Sci. Eng. A 483–484, 148 (2008)

    Article  Google Scholar 

  42. [42]

    C. Cai, S. He, L.F. Li, Q. Teng, B. Song, C.Z. Yan, Q.S. Wei, Y.S. Shi, Compos. Part B 164, 546 (2019)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51571118 and 51371098) and the Jiangsu Province Science and Technology Plan Project (No. BE2018753/KJ185629). Zong-Han Xie acknowledges the support of the Australian Research Council Discovery Projects.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to He-Guo Zhu or Zong-Han Xie.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Huang, S., Zhu, C. et al. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01084-2

Download citation

Keywords

  • High-entropy alloy matrix composite
  • TiC particle
  • Reaction mechanism
  • Mechanical properties
  • Strengthening mechanism