High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications

Abstract

The nano-Ag paste consisted of Ag nanoparticles and organic solvents. These organics would be removed by evaporation or decomposition during sintering. When the sintering temperature was 300 °C, the resistivity of sintered bulk was 8.35 × 10−6 Ω cm, and its thermal conductivity was 247 W m−1 K−1. The Si/SiC chips and direct bonding copper (DBC) substrates could be bonded by this nano-Ag paste at low temperature. The bonding interface, sintered microstructure and shear strength of Si/SiC chip attachment were investigated by scanning electron microscopy, transmission electron microscopy and shear tests. Results showed that the sintered Ag layer was porous structure and tightly adhered to the electroless nickel immersion gold surface of DBC substrate and formed the continuous Ag–Au interdiffusion layer. The shear strength of Si and SiC chip attachments was higher than 35 MPa when the sintering pressure was 10 MPa. The fracture occurred inside the sintered Ag layer, and the fracture surface had obvious plastic deformation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. [1]

    F. Yu, J. Cui, Z. Zhou, K. Fang, R.W. Johnson, M.C. Hamilton, IEEE Trans. Power Electron. 32, 7083 (2017)

    Article  Google Scholar 

  2. [2]

    J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)

    Article  Google Scholar 

  3. [3]

    H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)

    Article  CAS  Google Scholar 

  4. [4]

    F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Microelectron. Eng. 187, 66 (2018)

    Article  CAS  Google Scholar 

  5. [5]

    W. Sabbah, F. Arabi, O. Avino-Salvado, C. Buttay, L. Théolier, H. Morel, Microelectron. Reliab. 76, 444 (2017)

    Article  CAS  Google Scholar 

  6. [6]

    M. Brincker, S. Söhl, R. Eisele, V.N. Popok, Microelectron. Reliab. 76, 378 (2017)

    Article  CAS  Google Scholar 

  7. [7]

    S. Mallampati, L. Yin, D. Shaddock, H. Schoeller, J. Cho, J. Electron. Packag. 140, 1 (2018)

    Article  CAS  Google Scholar 

  8. [8]

    H. Zhang, J. Minter, N.C. Lee, J. Electron. Mater. 48, 201 (2019)

    CAS  Article  Google Scholar 

  9. [9]

    C. Chen, Y. Gao, Z.Q. Liu, K. Suganuma, Scr. Mater. 179, 36 (2020)

    CAS  Article  Google Scholar 

  10. [10]

    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994 (2014)

    CAS  Article  Google Scholar 

  11. [11]

    C. Chen, K. Suganuma, Mater. Des. 162, 311 (2019)

    CAS  Article  Google Scholar 

  12. [12]

    R. Zhang, J. Mater. Chem. A 20, 2018 (2010)

    CAS  Article  Google Scholar 

  13. [13]

    J.R. Greer, R.A. Street, Acta Mater. 55, 6345 (2007)

    CAS  Article  Google Scholar 

  14. [14]

    P. Hu, W. O’Neil, Q. Hu, Appl. Surf. Sci. 257, 680 (2010)

    CAS  Article  Google Scholar 

  15. [15]

    D.E. Xu, J.B. Kim, M.D. Hook, J.P. Jung, M. Mayer, J. Alloys Compd. 731, 504 (2018)

    CAS  Article  Google Scholar 

  16. [16]

    J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, Mater. Des. 140, 64 (2018)

    Article  CAS  Google Scholar 

  17. [17]

    S. Fu, Y. Mei, X. Li, C. Ma, G. Lu, I.E.E.E. Trans, Power Electron. 32, 6049 (2017)

    Article  Google Scholar 

  18. [18]

    J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Scr. Mater. 66, 582 (2012)

    CAS  Article  Google Scholar 

  19. [19]

    W.H. Li, P.S. Lin, C.N. Chen, T.Y. Dong, C.H. Tsai, W.T. Kung, J.M. Song, Y.T. Chiu, P.F. Yang, Mater. Sci. Eng. A 613, 372 (2014)

    CAS  Article  Google Scholar 

  20. [20]

    K.S. Siow, J. Electron. Mater. 43, 947 (2014)

    CAS  Article  Google Scholar 

  21. [21]

    T. Ishizaki, R. Watanabe, J. Mater. Chem. 22, 25189 (2012)

    Article  CAS  Google Scholar 

  22. [22]

    H. Yu, L. Li, Y. Zhang, Scr. Mater. 66, 931 (2012)

    CAS  Article  Google Scholar 

  23. [23]

    H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, W. Guo, J. Alloys Compd. 774, 487 (2019)

    CAS  Article  Google Scholar 

  24. [24]

    K.S. Siow, J. Alloys Compd. 514, 6 (2012)

    CAS  Article  Google Scholar 

  25. [25]

    D. Wakuda, K. Kim, K. Suganuma, I.E.E.E. Trans, Compon. Packag. Technol. 33, 437 (2010)

    CAS  Article  Google Scholar 

  26. [26]

    K.S. Tan, K.Y. Cheong, Mater. Des. 64, 166 (2014)

    CAS  Article  Google Scholar 

  27. [27]

    Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, J. Electron. Mater. 39, 1283 (2010)

    CAS  Article  Google Scholar 

  28. [28]

    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)

    CAS  Article  Google Scholar 

  29. [29]

    D.H. Petersen, O. Hansen, R. Lin, P.F. Nielsen, J. Appl. Phys. 104, 013710 (2008)

    Article  CAS  Google Scholar 

  30. [30]

    Y. Zhang, J. Zhang, J. Colloid Interface Sci. 283, 352 (2005)

    CAS  Article  Google Scholar 

  31. [31]

    S. Majumdar, B. Adhikari, Sens. Actuat. B 114, 747 (2006)

    CAS  Article  Google Scholar 

  32. [32]

    B.J. Baliga, I.E.E.E. Trans, Electron Devices 43, 1717 (1996)

    Article  Google Scholar 

  33. [33]

    L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. Paper presented in 2007 IEEE power electronics specialists conference, Orlando, USA, 17–21 June 2007

  34. [34]

    S. Wang, M.Y. Li, H.J. Ji, C.Q. Wang, Scr. Mater. 69, 789 (2013)

    CAS  Article  Google Scholar 

  35. [35]

    G.Q. Lu, J.N. Calata, G. Lei, X. Chen, Low-temperature and pressureless sintering technology for high-performance and high-temperature interconnection of semiconductor devices. Paper presented at international conference on thermal, mechanical and multi-physics simulation experiments in microelectronics and micro-systems, London, UK, 16–18 April 2007

  36. [36]

    M.I. Aivazov, I.A. Domashnev, Sov. Powder Metall. Met. Ceram. 7, 708 (1968)

    Article  Google Scholar 

  37. [37]

    J. Kahler, N. Heuck, A. Wagner, A. Stranz, E. Peiner, A. Waag, I.E.E.E. Trans, Compon. Packag. Technol. 2, 1587 (2012)

    Google Scholar 

  38. [38]

    B.S. Lee, J.W. Yoon, Met. Mater. Int. 23, 958 (2017)

    CAS  Article  Google Scholar 

  39. [39]

    M.S. Kim, H. Nishikawa, Scr. Mater. 92, 43 (2014)

    CAS  Article  Google Scholar 

  40. [40]

    H. Zhang, H. Bai, P. Peng, W. Guo, G. Zou, L. Liu, Weld. World 63, 1055 (2019)

    Article  Google Scholar 

  41. [41]

    Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, I.E.E.E. Trans, Device Mater. Reliab. 18, 240 (2018)

    CAS  Article  Google Scholar 

  42. [42]

    S. Nishimoto, S.A. Moeini, T. Ohashi, Y. Nagatomo, P. McCluskey, Microelectron. Reliab. 87, 232 (2018)

    CAS  Article  Google Scholar 

  43. [43]

    S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593 (2013)

    CAS  Google Scholar 

  44. [44]

    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)

    CAS  Article  Google Scholar 

  45. [45]

    Y. Yasuda, E. Ide, T. Morita, Jpn. J. Appl. Phys. 48, 125004 (2009)

    Article  CAS  Google Scholar 

  46. [46]

    Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, J. Alloys Compd. 780, 435 (2019)

    CAS  Article  Google Scholar 

  47. [47]

    J.G. Bai, G. Lu, I.E.E.E. Trans, Device Mater. Reliab. 6, 436 (2006)

    CAS  Article  Google Scholar 

  48. [48]

    Y. Tan, X. Li, X. Chen, G. Lu, Y. Mei, I.E.E.E. Trans, Compon. Packag. Technol. 8, 202 (2018)

    CAS  Google Scholar 

  49. [49]

    W. Liu, Y. Wang, Z. Zheng, C. Wang, R. An, Y. Tian, L. Kong, R. Xu, J. Mater. Sci.: Mater. Electron. 30, 7787 (2019)

    CAS  Google Scholar 

  50. [50]

    C. Chen, Z. Zhang, Q. Wang, B. Zhang, Y. Gao, T. Sasamurad, Y. Odad, N. Mac, K. Suganuma, J. Alloys Compd. 828, 154397 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFB1104900) and the China Postdoctoral Science Foundation (No. 2019M650425).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Guo or Gui-Sheng Zou.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Bai, H., Jia, Q. et al. High Electrical and Thermal Conductivity of Nano-Ag Paste for Power Electronic Applications. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01083-3

Download citation

Keywords

  • Nano-Ag paste
  • Sintering process
  • Interfacial microstructure
  • Chip attachment
  • Shear strength