FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys


A hybrid first-principles/Monte Carlo simulation is combined with experiments to study the structure and elastic properties of CoCrNix (x = 1–0.5) alloys. The experimental X-ray diffraction patterns show that the structures have changed from the single-phase face-centered cubic (FCC) structure at x = 1–0.8 to the coexistence of FCC and the hexagonal close-packed structures at x = 0.7–0.5, which is further confirmed by calculations on mixing energies. The elastic moduli by calculation are basically in agreement with experiments. Room-temperature tension shows that the six alloys have a certain plasticity, the strength and plasticity of the alloys have a linear decrease with the decrease in Ni contents, and the plasticity of the alloys drops from 84 to 23%. Furthermore, first-principles density function theory calculations were employed to reveal the electronic and magnetic structures of alloys. The electron density of states for all alloys is asymmetrical, which illustrates that the alloys are ferromagnetism. It is found that Cr atoms can suppress the ferromagnetism of alloys, since Cr atoms have both positive and negative magnetic moments in all alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    T.K. Chen, T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188–189, 193 (2004)

    Article  Google Scholar 

  2. [2]

    C.Y. Hsu, J.W. Yeh, P.H. Lee, T.T. Shun, Metall. Mater. Trans. A 35, 1465 (2004)

    Article  Google Scholar 

  3. [3]

    P.K. Huang, J.W. Yeh, T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74 (2004)

    CAS  Article  Google Scholar 

  4. [4]

    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    CAS  Article  Google Scholar 

  5. [5]

    J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, P.H. Lee, T.T. Shun, C.H. Tsau, S.Y. Chou, Metall. Mater. Trans. A 35, 2533 (2004)

    Article  Google Scholar 

  6. [6]

    L. Zhang, G. Ma, L. Fu, J. Tian, Adv. Mater. Res. 631–632, 227 (2013)

    Google Scholar 

  7. [7]

    Y. Zhang, T.T. Zuo, Z. Tang, K. Dahmen, P. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2013)

    Article  Google Scholar 

  8. [8]

    M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, High-Entropy Alloys: Fundamentals and Applications (Springer, Cham, Switzerland, 2016)

    Google Scholar 

  9. [9]

    Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, Mater. Des. 96, 10 (2016)

    CAS  Article  Google Scholar 

  10. [10]

    J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, M.C. Gao, J. Appl. Phys. 124, 195101 (2018)

    Article  Google Scholar 

  11. [11]

    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)

    CAS  Article  Google Scholar 

  12. [12]

    P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, R.P. Liu, Intermetallics 70, 82 (2016)

    CAS  Article  Google Scholar 

  13. [13]

    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Nat. Commun. 6, 5964 (2015)

    Article  Google Scholar 

  14. [14]

    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124, 143 (2017)

    CAS  Article  Google Scholar 

  15. [15]

    X.Q. Wang, W.G. Chen, Z.L. Zhu, Y. Jia, Acta. Metall. Sin. (Engl. Lett.) 28, 793 (2015)

    CAS  Article  Google Scholar 

  16. [16]

    S. Li, B. Liu, J. Liu, Acta Metall Sin (Engl. Lett.) 27, 1057 (2014)

    CAS  Article  Google Scholar 

  17. [17]

    A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Nature 460, 292 (2009)

    CAS  Article  Google Scholar 

  18. [18]

    B.L. Gyorffy, Phys. Rev. B 5, 2382 (1972)

    Article  Google Scholar 

  19. [19]

    S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, H.S. Kim, Mater. Sci. Eng. A 735, 394 (2018)

    CAS  Article  Google Scholar 

  20. [20]

    S. Praveen, J.W. Bae, P. Asghari-Rad, J.M. Park, H.S. Kim, Mater. Sci. Eng. A 734, 338 (2018)

    CAS  Article  Google Scholar 

  21. [21]

    S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134, 33 (2017)

    CAS  Article  Google Scholar 

  22. [22]

    J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, M.J. Mills, Acta Mater. 132, 35 (2017)

    CAS  Article  Google Scholar 

  23. [23]

    A. van de Walle, G. Ceder, Rev. Mod. Phys. 74, 11 (2001)

    Article  Google Scholar 

  24. [24]

    D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Acta Mater. 100, 90 (2015)

    CAS  Article  Google Scholar 

  25. [25]

    S. Zhao, G.M. Stocks, Y. Zhang, Acta Mater. 134, 334 (2017)

    CAS  Article  Google Scholar 

  26. [26]

    C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, M. Ghazisaeidi, Nat. Commun. 9, 1363 (2018)

    Article  Google Scholar 

  27. [27]

    Z. Dong, S. Schonecker, W. Li, D. Chen, L. Vitos, Sci. Rep. 8, 12211 (2018)

    Article  Google Scholar 

  28. [28]

    S. Mu, G.D. Samolyuk, S. Wimmer, M.C. Troparevsky, S.N. Khan, S. Mankovsky, H. Ebert, G.M. Stocks, NPJ Comput. Mater. 5, 1 (2019)

    CAS  Article  Google Scholar 

  29. [29]

    K. Jin, S. Mu, K. An, W.D. Porter, G.D. Samolyuk, G.M. Stocks, H. Bei, Mater. Des. 117, 185 (2017)

    CAS  Article  Google Scholar 

  30. [30]

    S.M. Zheng, W.Q. Feng, S.Q. Wang, Comput. Mater. Sci. 142, 332–337 (2018)

    CAS  Article  Google Scholar 

  31. [31]

    G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter 47, 558 (1993)

    CAS  Article  Google Scholar 

  32. [32]

    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 16 (1996)

    Article  Google Scholar 

  33. [33]

    S. Backes, Phys. Rev. B 50, 40 (1994)

    Article  Google Scholar 

  34. [34]

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  Google Scholar 

  35. [35]

    I. Moravcik, L. Gouvea, J. Cupera, I. Dlouhy, J. Alloys Compd. 748, 979 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986)

    Google Scholar 

  37. 37.

    G. Alers, J. Neighbours, J. Appl. Phys. 28, 1514 (1957)

    CAS  Article  Google Scholar 

  38. 38.

    I. Moravcik, J. Cizek, Z. Kovacova, J. Nejezchlebova, M. Kitzmantel, E. Neubauer, I. Kubena, V. Hornik, I. Dlouhy, Mater. Sci. Eng. A 701, 370 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, Y. Zhang, Acta Mater. 130, 10 (2017)

    CAS  Article  Google Scholar 

Download references


Jun-Wei Qiao would like to acknowledge the opening project from the National Key Laboratory for Remanufacturing (No. 61420050204), the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (2019), and the opening project of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, No. KFJJ20-13 M). Hua Tian would like to acknowledge the National Natural Science Foundation of China (No. 51901152).

Author information



Corresponding authors

Correspondence to Hua Tian or Jun-Wei Qiao.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tian, H., Wang, Z. et al. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01080-6

Download citation


  • Hexagonal close-packed (HCP) structure
  • Medium-entropy alloys
  • Magnetic
  • Mechanical properties
  • Phase transformation
  • High-entropy alloys