Solidification of Mg–Zn–Zr Alloys: Grain Growth Restriction, Dendrite Coherency and Grain Size

Abstract

The solidification characterization of Mg–xZn–0.5Zr (x = 0, 1, 3, 4, 5 wt%) alloys has been extensively investigated through thermal analysis, microstructure characterization and thermodynamic calculations. The impact of Zn content on the grain growth restriction, dendrite coherency and thus the final grain size has been investigated and discussed. Increasing Zn content, the grain size of Mg–xZn–0.5Zr alloy was firstly refined and then coarsened with the finest grain size of ~ 50 μm for the Mg–3Zn–0.5Zr (ZK31) alloy. Significant effects of the grain size on the mechanical properties were observed in the investigated alloys. The combination of growth restriction factor theory and dendrite coherency point provides a reasonable explanation of the grain size results. It helps to further understand the mechanisms of grain refinement and grain coarsening related to solute content, providing reference for alloy design and grain size prediction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    K.N. Solanki, D. Orlov, A. Singh, N.R. Neelameggham (eds.), Magnesium Technology 2017 (Springer, Cham, 2017)

    Google Scholar 

  2. [2]

    P.L. Zhang, Y.H. Zhao, R.P. Lu, Z.B. Ding, H. Hou, Acta Metall. Sin. -Engl. Lett. 32, 550 (2018)

    Article  Google Scholar 

  3. [3]

    H. Zengin, Y. Turen, M.E. Turan, F. Aydın, Acta Metall. Sin. -Engl. Lett. 32, 1309 (2019)

    CAS  Article  Google Scholar 

  4. [4]

    S.Q. Yin, Z.Q. Zhang, X. Liu, Q.C. Le, Q. Lan, L. Bao, J.Z. Cui, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 695, 135 (2017)

    CAS  Article  Google Scholar 

  5. [5]

    R.G. Guan, I. Johnson, T. Cui, T. Zhao, Z.Y. Zhao, X. Li, H.N. Liu, J. Biomed. Mater. Res. Part A 100, 999 (2012)

    Article  Google Scholar 

  6. [6]

    Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, J. Alloys Compd. 619, 639 (2015)

    CAS  Article  Google Scholar 

  7. [7]

    M. Qian, L. Zheng, D. Graham, M.T. Frost, J. Light Met 1, 157 (2001)

    Article  Google Scholar 

  8. [8]

    M. Qian, D.H. StJohn, M.T. Frost, Scr. Mater. 46, 649 (2002)

    Article  Google Scholar 

  9. [9]

    M. Qian, D.H. StJohn, M.T. Frost, Scr. Mater. 50, 1115 (2004)

    CAS  Article  Google Scholar 

  10. [10]

    M. Easton, D. StJohn, Metall. Mater. Trans. A 36, 1911 (2005)

    Article  Google Scholar 

  11. [11]

    D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59, 4907 (2011)

    CAS  Article  Google Scholar 

  12. [12]

    M. Qian, P. Cao, M.A. Easton, S.D. McDonald, D.H. StJohn, Acta Mater. 58, 3262 (2010)

    CAS  Article  Google Scholar 

  13. [13]

    D.H. Stjohn, M.A. Easton, P. Cao, M. Qian, Int. J. Cast. Met. Res. 20, 131 (2007)

    CAS  Article  Google Scholar 

  14. [14]

    I. Maxwell, A. Hellawell, Acta Metall. 23, 229 (1975)

    CAS  Article  Google Scholar 

  15. [15]

    T. Quested, A. Dinsdale, A. Greer, Acta Mater. 53, 1323 (2005)

    CAS  Article  Google Scholar 

  16. [16]

    H. Xu, L.D. Xu, S.J. Zhang, Q. Han, Scr. Mater. 54, 2191 (2006)

    CAS  Article  Google Scholar 

  17. [17]

    Y.C. Lee, A.K. Dahle, D.H. StJohn, Metall. Mater. Trans. A 31, 2895 (2000)

    Article  Google Scholar 

  18. [18]

    J. Gu, Y. Huang, M. Zhang, K.U. Kainer, N. Hort, Effects of Mn and Zn solutes on grain refinement of commercial pure magnesium, in Magnesium Technology 2017, ed. by K.N. Solanki, D. Orlov, A. Singh, N.R. Neelameggham (Springer, Cham, 2017), pp. 191–198

    Google Scholar 

  19. [19]

    S. Liang, Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2010)

  20. [20]

    X. Yao, A.K. Dahle, C.J. Davidson, D.H. StJohn, J. Mater. Sci. 42, 9756 (2007)

    CAS  Article  Google Scholar 

  21. [21]

    M. Malekan, S.G. Shabestari, Metall. Mater. Trans. A 40, 3196 (2009)

    Article  Google Scholar 

  22. [22]

    G.C. Chai, L. Backerud, T. Rolland, L. Arnberg, Metall. Mater. Trans. A 26, 965 (1995)

    Article  Google Scholar 

  23. [23]

    Z. Hildebrand, M. Qian, D. StJohn, M. Frost, Influence of zinc on the soluble zirconium content in magnesium and the subsequent grain refinement by zirconium, in Magnesium Technology 2004, ed. by A.A. Luo (Springer, Cham, 2004), pp. 241–245

    Google Scholar 

  24. [24]

    C.H. Cáceres, A. Blake, Phys. Status Solidi A 194, 147 (2002)

    Article  Google Scholar 

  25. [25]

    S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, E.H. Han, Mater. Sci. Eng. A 480, 365 (2008)

    Article  Google Scholar 

  26. [26]

    Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han, J. Alloys Compd. 468, 170 (2009)

    CAS  Article  Google Scholar 

  27. [27]

    W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328 (2009)

    CAS  Article  Google Scholar 

  28. [28]

    R. Schmid-Fetzer, J. Gröbner, Metals 2, 377 (2012)

    CAS  Article  Google Scholar 

  29. [29]

    R. Schmid-Fetzer, A. Kozlov, Acta Mater. 59, 6133 (2011)

    CAS  Article  Google Scholar 

  30. [30]

    M. Qian, Z.C.G. Hildebrand, D.H. StJohn, Metall. Mater. Trans. A 40, 2470 (2009)

    Article  Google Scholar 

  31. [31]

    M.A. Easton, D.H. StJohn, Acta Mater. 49, 1867 (2001)

    CAS  Article  Google Scholar 

  32. [32]

    Y.P. Xie, Z.Y. Wang, Z.F. Hou, Scr. Mater. 68, 495 (2013)

    CAS  Article  Google Scholar 

  33. [33]

    R.W. Armstrong, Mater. Trans. 55, 2 (2014)

    CAS  Article  Google Scholar 

  34. [34]

    J.D. Robson, C. Paa-Rai, Acta Mater. 95, 10 (2015)

    CAS  Article  Google Scholar 

  35. [35]

    K. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th edn. (Trans Tech Publications, 1984)

  36. [36]

    J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Z.W. Shan and his students acknowledge the supports by the National Key Research and Development Program of China (No. 2017YFB0702001) and the Natrual Science Foundation of China (No. 51621063). They also appreciate the support from the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, the Collaborative Innovation Center of High-End Manufacturing Equipment and the Science and Technology Department of Shaanxi Province (Nos. 2016KTZDGY-04-03 and 2016KTZDGY-04-04). R.S. Chen and his students acknowledge the National Natural Science Foundation for Young Scholars (No. 51701218) and the National Science and Technology Major Project of China through Project No. 2017ZX04014001.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rongshi Chen or Zhiwei Shan.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, P., Hou, D., Han, E. et al. Solidification of Mg–Zn–Zr Alloys: Grain Growth Restriction, Dendrite Coherency and Grain Size. Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01069-1

Download citation

Keywords

  • Magnesium alloy
  • Grain size
  • Solute content
  • Growth restriction
  • Dendrite coherency
  • Solidification