Skip to main content
Log in

Influence of Static Low Electromagnetic Field on Copper Corrosion in the Presence of Multispecies Aerobic Bacteria

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of low electromagnetic field (EMF) (B = 2 mT) on the corrosion of pure copper in the absence and presence of multispecies marine aerobic bacteria were investigated in this work. The results showed that EMF has an inhibitory effect on copper metals and decreases the corrosion rate of copper metals in sterile artificial seawater. However, microbiologically influenced corrosion of Cu was increased in the presence of electromagnetic field due to its effect on the biofilm morphology and structure. EMF reduced the growth rate of bacteria and decreased bacterial attachment, thereby forming a heterogeneous and non-stable biofilm on the Cu surface in the presence of EMF. Moreover, the biofilm was dispersed throughout the surface after 7 days, whereas the scattered bacteria were observed on the surface after 10 days. Confocal laser scanning microscopy images showed large and deep pits on the surface in the presence of EMF and confirmed the acceleration of Cu corrosion in the presence of EMF and multispecies bacteria. Furthermore, XPS and FTIR results demonstrated that the corrosion products and metabolic by-products were significantly changed in the presence of EMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.T. Peters, Review of Copper–Nickel Alloy Sheathing of Ship Hulls and Offshore Structures. The Application of Copper–Nickel Alloys in Marine Systems. Technical report 7044-1919, Greenwich, CT, Copper Development Association (CDA) (1991)

  2. A. Drach, I. Tsukrov, J. DeCew, J. Aufrecht, A. Grohbauer, Corros. Sci. 76, 453 (2013)

    Article  Google Scholar 

  3. E. Huttunen-Saarivirta, P. Rajala, M. Bomberg, L. Carpen, Electrochem. Acta 240, 163 (2017)

    Article  Google Scholar 

  4. N.O. San, H. Nazır, G. Donmez, Corros. Sci. 79, 177 (2014)

    Article  Google Scholar 

  5. N.O. San, H. Nazır, G. Donmez, Corros. Sci. 53, 2216 (2011)

    Article  Google Scholar 

  6. S. Chen, D. Zhang, Corros. Sci. 136, 275 (2018)

    Article  Google Scholar 

  7. S. Chen, P. Wang, D. Zhang, Corros. Sci. 87, 407 (2014)

    Article  Google Scholar 

  8. Y.Y. Song, H.W. Shi, J. Wang, F.C. Liu, Corrosion behavior of cupronickel alloy in simulated seawater in the presence of sulfate-reducing bacteria. Acta Metall. Sin. (Engl. Lett.) 30, 1201 (2017)

    Article  Google Scholar 

  9. L. Fojt, L. Strasak, V. Vetterl, Bioelectrochemistry 70, 91 (2007)

    Article  Google Scholar 

  10. A. Obermeier, F.D. Matl, W. Friess, A. Stemberger, Bioelectromagnetics 30, 270 (2009)

    Article  Google Scholar 

  11. G.D. Bonaventura, A. Pompilio, V. Crocetta, S.D. Nicola, F. Barbaro, L. Giuliani, E. D’emilia, E. Fiscarelli, R.G. Bellomo, R. Saggini, Future Microbiol. 9, 1303 (2014)

    Article  Google Scholar 

  12. I. Costa, M.C.L. Oliveira, H.G. de Melo, R.N. Faria, J. Magn. Magn. Mater. 278, 348 (2004)

    Article  Google Scholar 

  13. L.Y. Anga, N.K. Othmana, A. Jalarb, I. Ismail, Proc. Chem. 19, 222 (2016)

    Article  Google Scholar 

  14. Z. Lu, W. Yang, Corros. Sci. 50, 510 (2008)

    Article  Google Scholar 

  15. V.R. Rao, K.V. Bangera, A.C. Hegde, J. Magn. Magn. Mater. 345, 48 (2013)

    Article  Google Scholar 

  16. H.W. Liu, D.K. Xu, B.J. Zheng, A synergistic acceleration of corrosion of Q235 carbon steel between magnetization and extracellular polymeric substances. Acta Metall. Sin. (Engl. Lett.) 31, 456 (2018)

    Article  Google Scholar 

  17. B. Guo, P. Zhang, Y. Jin, S. Cheng, Rare Met. 27, 324 (2008)

    Article  Google Scholar 

  18. T. Karaguler, H. Kahraman, M. Tuter, Biocybern. Biomed. Eng. 37, 336 (2017)

    Article  Google Scholar 

  19. L. Chen, C. Chen, P. Wang, C. Chen, L. Wu, T. Song, J. Magn. Magn. Mater. 115, 117 (2018)

    Google Scholar 

  20. L. Fojt, L. Strasak, V. Vetter, J. Smarda, Bioelectrochemistry 63, 337 (2004)

    Article  Google Scholar 

  21. J. Novak, L. Strasak, L. Fojt, I. Slaninova, V. Vetterl, Bioelectrochemistry 70, 115 (2007)

    Article  Google Scholar 

  22. L.O. Mair, A. Nacev, R. Hilaman, P.Y. Stepanov, S. Chowdhury, S. Jafari, J. Hausfeld, A.J. Karlsson, M.F. Shirtliff, B. Shapiro, I.N. Weinberg, J. Magn. Magn. Mater. 427, 81 (2017)

    Article  Google Scholar 

  23. B. Zheng, K. Li, H. Liu, T. Gu, Ind. Eng. Chem. Res. 53, 48 (2014)

    Article  Google Scholar 

  24. M. Moradi, Z. Song, L. Yang, J. Jiang, J. He, Corros. Sci. 84, 103 (2014)

    Article  Google Scholar 

  25. Z. Sun, M. Moradi, Y. Chen, R. Bagheri, P. Guo, L. Yang, Z. Song, C. Xu, Mater. Chem. Phys. 208, 149 (2018)

    Article  Google Scholar 

  26. J. Filipic, B. Kraigher, B. Tepus, V. Kokol, I. Mandic-Mulec, Bioresour. Technol. 120, 225 (2012)

    Article  Google Scholar 

  27. X.B. Peng, Q.A. Li, L.N. Ou, L.F. Jiang, K. Zeng, Int. J. Biol. Macromol. 47, 304 (2010)

    Article  Google Scholar 

  28. S. Zhao, F. Cao, H. Zhang, L. Zhang, F. Zhang, X. Liang, Appl. Biochem. Biotechnol. 172, 2732 (2014)

    Article  Google Scholar 

  29. A.V. Tugarova, P.V. Mamchenkova, Y.A. Dyatlova, A.A. Kamnev, Spectrochim. Acta 192, 458 (2018)

    Article  Google Scholar 

  30. E. Lazzari, T. Schena, M. Caetano, A. Marcelo, C.T. Primaz, A.N. Silva, M.F. Ferrao, T. Bjerk, E.B. Caramao, Ind. Crop. Prod. 111, 856 (2018)

    Article  Google Scholar 

  31. B.M. Lee, H.S. Shin, J. Hur, Chemosphere 90, 237 (2013)

    Article  Google Scholar 

  32. X.N. Liao, F.H. Cao, L.Y. Zheng, W.J. Liu, A.N. Chen, J.Q. Zhang, C.A. Cao, Corros. Sci. 53, 3289 (2011)

    Article  Google Scholar 

  33. S. Hong, W. Chen, H.Q. Luo, N.B. Li, Corros. Sci. 57, 270 (2012)

    Article  Google Scholar 

  34. J. Xu, K. Wang, C. Sun, F. Wang, X. Li, J. Yang, C. Yu, Corros. Sci. 53, 1554 (2011)

    Article  Google Scholar 

  35. S. Chongdar, G. Gunasekaran, P. Kumar, Electrochim. Acta 50, 4655 (2005)

    Article  Google Scholar 

  36. D.Q. Zhang, J.K. Goun, Y.K. Lee, Investigation of molybdate-benzotriazole surface treatment against copper tarnishing. Surf. Interface Anal. 41, 164 (2009)

    Article  Google Scholar 

  37. Y.J. Xu, G. Weinberg, X. Liu, Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon. Adv. Funct. Mater. 18, 3613 (2008)

    Article  Google Scholar 

  38. O. Akhavan, R. Azimirad, S. Safa, E. Hasani, J. Mater. Chem. 21, 9634 (2011)

    Article  Google Scholar 

  39. J. Landoulsi, M.J. Genet, S. Fleith, Organic adlayer on inorganic materials: XPS analysis selectivity to cope with adventitious contamination. Appl. Surf. Sci. 383, 71 (2016)

    Article  Google Scholar 

  40. E. Vassallo, A. Cremona, F. Ghezzi, Structural and optical properties of amorphous hydrogenated silicon carbonitride films produced by PECVD. Appl. Surf. Sci. 252, 7993 (2006)

    Article  Google Scholar 

  41. B.V. Appa Rao, M. Narsihma Reddy, Arab. J. Chem. 10, S3270 (2017)

    Article  Google Scholar 

  42. C.F. Hao, C. Tai-You, L. Szu-Han, C. Yun-Hsien, C. You-Jyun, L.J. Liang, Surf. Interface Anal. 10, 162 (2018)

    Article  Google Scholar 

  43. R.J.J. Jansen, H. van Bekkum, Carbon 33, 1021 (1995)

    Article  Google Scholar 

  44. G. Kear, B.D. Barker, F.C. Walsh, Corros. Sci. 46, 109 (2004)

    Article  Google Scholar 

  45. L. Strasak, V. Vetterl, J. Smarda, Bioelectrochemistry 55, 161 (2002)

    Article  Google Scholar 

  46. A. Harimawan, H. Devianto, I.C. Kurniawan, J.C. Utomo, Influence of incubation temperature on biofilm formation and corrosion of carbon steel by Serratia marcescens. AIP Conf. Proc. 1805, 060005 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 5161101078) and Ningbo 135 Marine Economic Innovation and Development Demonstration Project (No. NBHY-2017-Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Moradi.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, XY., Moradi, M., Yang, LJ. et al. Influence of Static Low Electromagnetic Field on Copper Corrosion in the Presence of Multispecies Aerobic Bacteria. Acta Metall. Sin. (Engl. Lett.) 32, 1287–1297 (2019). https://doi.org/10.1007/s40195-019-00915-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00915-1

Keywords

Navigation