Skip to main content

Advertisement

Log in

Corrosion Behavior of High-Strength Steel for Flexible Riser Exposed to CO2-Saturated Saline Solution and CO2-Saturated Vapor Environments

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The corrosion behavior of high-strength steel used for flexible riser exposed to CO2-saturated saline solution and CO2-saturated vapor environments was studied through immersion experiment and electrochemical corrosion experiment. The corrosion behavior and mechanism of the tested steel were analyzed on the basis of corrosion kinetics, nature of corrosion products, corrosion product morphology, elemental distribution and polarization curves. The experimental results showed that the microstructure of the tested steel was bainitic microstructure. The corrosive activity of the tested steel exposed to CO2-saturated vapor environment was significantly lower than that exposed to CO2-saturated saline solution environment. On prolonging the exposure time, the corrosion rate gradually decreased, the corrosion heterogeneity increased, and the dimensions of FeCO3 crystals gradually became small. At later stages of corrosion, the corrosion current density decreased significantly and the anodic Tafel slope increased, indicating that the corrosion process was strongly inhibited. The corrosion mechanism of low-alloy steel with bainitic microstructure was proposed based on experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.R. Linter, G.T. Burstein, Corros. Sci. 117, 41 (1999)

    Google Scholar 

  2. J.D. Laumb, K.A. Glazewski, J.A. Hamling, A. Azenkeng, N. Kalenze, T.L. Watson, Energy Procedia 5173, 114 (2017)

    Google Scholar 

  3. X. Yang, S. Saevik, L. Sun, Ocean Eng. 594, 108 (2015)

    Google Scholar 

  4. I.S. Cole, P. Corrigan, S. Sim, N. Birbilis, Int. J. Greenh. Gas Control 749, 5 (2011)

    Google Scholar 

  5. Z.-L. Zhang, L.-Q. Wang, H.-Y. Ci, Ocean Eng. 386, 106 (2015)

    Google Scholar 

  6. S.M. O’Halloran, A.D. Connaire, A.M. Harte, S.B. Leen, Tribol. Int. 306, 100 (2016)

    Google Scholar 

  7. M.A. Vaz, N.A.S. Rizzo, Mar. Struct. 275, 24 (2011)

    Google Scholar 

  8. N.H. Østergaard, A. Lyckegaard, J.H. Andreasen, Mar. Struct. 64, 27 (2012)

    Google Scholar 

  9. Z. Liu, X. Gao, L. Du, J. Li, X. Zhou, X. Wang, Y. Wang, C. Liu, G. Xu, R.D.K. Misra, Appl. Surf. Sci. 974, 440 (2018)

    Google Scholar 

  10. Y. Bai, T. Liu, W. Ruan, W. Chen, Compos. Struct. 1, 170 (2017)

    Google Scholar 

  11. C. Taravel-Condat, N. Desamais, Qualification of high strength carbon steel wires for use in specific annulus environment of flexible pipes containing CO2 and H2S. Paper presented at the 25th international conference on offshore mechanics and Arctic engineering, Hamburg, Germany, 4–9 June 2006

  12. D.A. Lopez, T. Perez, S.N. Simison, Mater. Des. 561, 24 (2003)

    Google Scholar 

  13. S. Sim, I.S. Cole, F. Bocher, P. Corrigan, R.P. Gamage, N. Ukwattage, N. Birbilis, Int. J. Greenh. Gas Control 534, 17 (2013)

    Google Scholar 

  14. R.M. Moreira, C.V. Franco, C.J.B.M. Joia, S. Giordana, O.R. Mattos, Corros. Sci. 2987, 46 (2004)

    Google Scholar 

  15. J.L. Li, H.X. Ma, S.D. Zhu, C.T. Qu, Z.F. Yin, Corros. Sci. 101, 86 (2014)

    Google Scholar 

  16. G.A. Zhang, Y.F. Cheng, Corros. Sci. 87, 51 (2009)

    Google Scholar 

  17. L. Xu, B. Wang, J. Zhu, W. Li, Z. Zheng, Appl. Surf. Sci. 39, 379 (2016)

    Google Scholar 

  18. Y. Zhou, J. Chen, Y. Xu, Z. Liu, J. Mater. Sci. Technol. 168, 29 (2013)

    Google Scholar 

  19. S. Guo, L. Xu, L. Zhang, W. Chang, M. Lu, Corros. Sci. 123, 110 (2016)

    Google Scholar 

  20. Z. Liu, X. Gao, J. Li, L. Du, C. Yu, P. Li, X. Bai, Electrochim. Acta 842, 213 (2016)

    Google Scholar 

  21. Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 165, 84 (2014)

    Google Scholar 

  22. Z. Liu, X. Gao, L. Du, J. Li, Y. Kuang, B. Wu, Appl. Surf. Sci. 610, 351 (2015)

    Google Scholar 

  23. S. Sim, I.S. Cole, Y.-S. Choi, N. Birbilis, Int. J. Greenh. Gas Contol 185, 29 (2014)

    Google Scholar 

  24. L. Wei, X. Pang, C. Liu, K. Gao, Corros. Sci. 404, 100 (2015)

    Google Scholar 

  25. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. de la Fuente, Corros. Sci. 438, 87 (2014)

    Google Scholar 

  26. Z.J. Cheng, D. Song, J.Y. Jiang, J.H. Jiang, X.L. Ma, K. You, A.B. Ma, J. Iron Steel Res. Int. 1281, 23 (2016)

    Google Scholar 

  27. G.A. Zhang, Y.F. Cheng, Corros. Sci. 1589, 51 (2009)

    Google Scholar 

  28. F.F. Eliyan, A. Alfantazi, Corros. Sci. 380, 85 (2014)

    Google Scholar 

  29. F.F. Eliyan, F. Mohammadi, A. Alfantazi, Corros. Sci. 37, 64 (2012)

    Google Scholar 

  30. A. Kahyarian, M. Singer, S. Nesic, J. Nat. Gas Sci. Eng. 530, 29 (2016)

    Google Scholar 

  31. M. Gao, X. Pang, K. Gao, Corros. Sci. 557, 53 (2011)

    Google Scholar 

  32. N. Zhang, D. Zeng, G. Xiao, J. Shang, Y. Liu, D. Long, Q. He, Ambrish Singh, J. Nat. Gas Sci. Eng. 444, 30 (2016)

    Google Scholar 

  33. J.L. Mora-Mendoza, S. Turgoose, Corros. Sci. 1223, 44 (2002)

    Google Scholar 

  34. L. Wei, K. Gao, Q. Li, Appl. Surf. Sci. 524, 440 (2018)

    Google Scholar 

  35. G.A. Zhang, D. Liu, Y.Z. Li, X.P. Guo, Corros. Sci. 107, 120 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was carried out with financial support from the National High Technology Research and Development Program of China (Grant No. 2015AA03A501) and Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology (1062931702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Hua Gao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DZ., Gao, XH., Du, LX. et al. Corrosion Behavior of High-Strength Steel for Flexible Riser Exposed to CO2-Saturated Saline Solution and CO2-Saturated Vapor Environments. Acta Metall. Sin. (Engl. Lett.) 32, 607–617 (2019). https://doi.org/10.1007/s40195-018-0825-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0825-2

Keywords

Navigation