Skip to main content
Log in

Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The residual stress evolution in a safe-end/nozzle dissimilar metal welded joint of CAP1400 nuclear power plants was investigated in the manufacturing process by finite element simulation. A finite element model, including cladding, buttering, post-weld heat treatment (PWHT) and dissimilar metal multi-pass welding, is developed based on SYSWELD software to investigate the evolution of residual stress in the aforementioned manufacturing process. The results reveal a large tensile axial residual stress, which exists at the weld zone on the inner surface, leads to a high sensitivity to stress corrosion cracking (SCC). PWHT process before dissimilar metal multi-pass welding process has a great influence on the magnitude and distribution of final axial residual stress. The risk of SCC on the inner surface of the pipe will increase if PWHT process is not taken into account. Therefore, such crucial thermal manufacturing process such as cladding, buttering and post-weld heat treatment, besides the multi-pass welding process, should be considered in the numerical model in order to accurately predict the distribution and the magnitude of the residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Dong, F.W. Brust, J. Press. Vessel Technol. 122, 329 (2000)

    Article  Google Scholar 

  2. E.H. Han, Acta Metall. Sin. 47, 769 (2011). (in Chinese)

    Google Scholar 

  3. H.L. Ming, Z.M. Zhang, J.Q. Wang, E.H. Han, M.X. Su, Acta Metall. Sin. 53, 57 (2017). (in Chinese)

    Google Scholar 

  4. H.T. Wang, G.Z. Wang, F.Z. Xuan, S.T. Tu, Nucl. Eng. Des. 241, 3234 (2011)

    Article  Google Scholar 

  5. O. Muránsky, M.C. Smith, P.J. Bendeich, L. Edwards, Comput. Mater. Sci. 50, 2203 (2011)

    Article  Google Scholar 

  6. S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, S.K. Baveja, Mater. Des. 32, 3823 (2011)

    Article  Google Scholar 

  7. J. Katsuyama, M. Udagawa, H. Nishikawa, M. Nakamura, K. Onizawa, E-J Adv. Maint. 2, 50 (2010)

    Google Scholar 

  8. T.K. Song, H.R. Bae, Y.J. Kim, K.S. Lee, Fatigue Fract. Eng. Mater. Struct. 33, 689 (2010)

    Article  Google Scholar 

  9. T.K. Song, Y.B. Kim, Y.J. Kim, C.Y. Oh, Proc. Mater. Sci. 3, 784 (2014)

    Article  Google Scholar 

  10. T.K. Song, C.Y. Oh, J.S. Kim, Y.J. Kim, K.S. Lee, C.Y. Park, Eng. Fract. Mech. 78, 1957 (2011)

    Article  Google Scholar 

  11. E.M. Dehaghi, H. Moshayedi, I. Sattari-Far, A.F. Arezoodar, Int. J. Press. Vessels Pip. 152, 56 (2017)

    Article  Google Scholar 

  12. P.J. Bendeich, O. Muránsky, C.J. Hamelin, M.C. Smith, L. Edwards, Comput. Mater. Sci. 62, 285 (2012)

    Article  Google Scholar 

  13. A. Joseph, S.K. Rai, T. Jayakumar, N. Murugan, Int. J. Press. Vessels Pip. 82, 700 (2005)

    Article  Google Scholar 

  14. P. Dong, J.K. Hong, P.J. Bouchard, Int. J. Press. Vessels Pip. 82, 258 (2005)

    Article  Google Scholar 

  15. T.P.T. Soanes, W. Bell, A.J. Vibert, Int. J. Press. Vessels Pip. 82, 311 (2005)

    Article  Google Scholar 

  16. D.A. Deng, K. Ogawa, S. Kiyoshima, N. Yanagida, K. Saito, Comput. Mater. Sci. 47, 398 (2009)

    Article  Google Scholar 

  17. S. Courtin, X. Ficquet, T.T.T. Le, P. Gilles, M. Yescas, in Proceedings of the ASME 2012 Pressure Vessels and Piping Conference, Toronto, Ontario, Canada, 1519 July 2012

  18. O. Doyen, D. Ayrault, A. Bonaventure, Weld. World 7, 1 (2015)

    Google Scholar 

  19. D.-J. Shim, S. Kalyanam, F. Brust, G. Wilkowski, M. Smith, A. Goodfellow, J. Press. Vessel Technol. 134, 051402-1 (2012)

    Article  Google Scholar 

  20. A. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, J.A. Williams, Int. J. Press. Vessels Pip. 83, 864 (2006)

    Article  Google Scholar 

  21. J. Katsuyama, H. Nishikawa, M. Udagawa, M. Nakmura, K. Onizawa, J. Press. Vessel Technol. 135, 051402-1 (2013)

    Google Scholar 

  22. Q. Wang, X.S. Liu, P. Wang, X. Xiong, H.Y. Fang, J. Mater. Process. Technol. 240, 77 (2017)

    Article  Google Scholar 

  23. S. Li, S.D. Ren, Y.B. Zhang, D. Deng, H. Murakawa, J. Mater. Process. Technol. 244, 240 (2017)

    Article  Google Scholar 

  24. J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15, 299 (1984)

    Article  Google Scholar 

  25. ESI Group, Material Database for SYSWELD 2010 (ESI France, Paris, 2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Open-ended Fund of the CAS Key Laboratory of Nuclear Materials and Safety Assessment (Grant No. 2015NMSAKF02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Ping Lu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, WC., Gao, DB. & Lu, SP. Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants. Acta Metall. Sin. (Engl. Lett.) 32, 618–628 (2019). https://doi.org/10.1007/s40195-018-0803-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0803-8

Keywords

Navigation