Skip to main content
Log in

Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of pH on the electrochemical behaviour and passive film composition of 316L stainless steel in alkaline solutions was studied using electrochemical measurements and a surface analysis method. The critical pH of 12.5 was found for the conversion from pitting corrosion to the oxygen evolution reaction (OER). OER was kinetically faster than pitting corrosion when both reactions could occur, and OER could postpone pitting corrosion. This resulted in pitting being initiated during the reversing scan in the cyclic polarization at the critical pH. According to the X-ray photoelectron spectroscopy analysis, the content of Cr and Mo decreased with pH, while Fe content increased. This induced the degradation of the passive film, which resulted in the higher passive current densities under more alkaline conditions. The selective dissolution of Mo at high pH was found, which demonstrated that the addition of Mo in austenitic stainless steels might not be beneficial to the corrosion resistance of 316L in strong alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Z. Wang, X. Tang, J. Xue, L. Zhang, T. Li, M. Lu, The pitting behavior of stainless steels under SO2 environments with Cl and F, in Proceedings of Corrosion 2017, New Orleans, 7–16 March, 2017

  2. A. Singh, K. Stéphenne, Energy Proc. 63, 1678 (2014)

    Article  Google Scholar 

  3. K. Oh, S. Ahn, K. Eom, K. Jung, H. Kwon, Corros. Sci. 79, 34 (2014)

    Article  Google Scholar 

  4. Z. Wang, L. Zhang, X. Tang, Z. Cui, J. Xue, M. Lu, Int. J. Miner. Metall. Mater. 24(8), 943 (2017)

    Article  Google Scholar 

  5. J. Bana, U. Lelek-Borkowska, B. Mazurkiewicz, W. Solarski, Electrochim. Acta 52(18), 5704 (2007)

    Article  Google Scholar 

  6. H. Ge, G. Zhou, W. Wu, Appl. Surf. Sci. 211(1–4), 321 (2003)

    Article  Google Scholar 

  7. D.D. Macdonald, J. Electrochem. Soc. 139(12), 3434 (1992)

    Article  Google Scholar 

  8. Y. Gui, Z.J. Zheng, Y. Gao, Thin Solid Films 599, 64 (2016)

    Article  Google Scholar 

  9. D.G. Li, J.D. Wang, D.R. Chen, Int. J. Hydrog. Energy 39(35), 20105 (2014)

    Article  Google Scholar 

  10. M. Kouril, P. Novak, M. Bojko, Cem. Concr. Res. 40(3), 431 (2010)

    Article  Google Scholar 

  11. S. Fajardo, D.M. Bastidas, M.P. Ryan, M. Criado, D.S. McPhail, J.M. Bastidas, Appl. Surf. Sci. 256(21), 6139 (2010)

    Article  Google Scholar 

  12. S.M. Alvarez, A. Bautista, F. Velasco, Corros. Sci. 53(5), 1748 (2011)

    Article  Google Scholar 

  13. H. Luo, C.F. Dong, X.G. Li, K. Xiao, Electrochim. Acta 64, 211 (2012)

    Article  Google Scholar 

  14. L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55(21SI), 6174 (2010)

    Article  Google Scholar 

  15. L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 56(14), 5280 (2011)

    Article  Google Scholar 

  16. Z. Wang, L. Zhang, X. Tang, Z. Zhang, M. Lu, Appl. Surf. Sci. 423, 457 (2017)

    Article  Google Scholar 

  17. Y. Li, Y.F. Cheng, Appl. Surf. Sci. 396, 144 (2017)

    Article  Google Scholar 

  18. W. Fredriksson, S. Malmgren, T. Gustafsson, M. Gorgoi, K. Edstrom, Appl. Surf. Sci. 258(15), 5790 (2012)

    Article  Google Scholar 

  19. B.T. Lu, J.L. Luo, Y.C. Lu, Electrochim. Acta 87, 824 (2013)

    Article  Google Scholar 

  20. S. Refaey, F. Taha, A. El-Malak, Appl. Surf. Sci. 242(1–2), 114 (2005)

    Article  Google Scholar 

  21. A.U. Malik, P.C. Mayan Kutty, N.A. Siddiqi, I.N. Andijani, S. Ahmed, Corros. Sci. 33(11), 1809 (1992)

    Article  Google Scholar 

  22. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai, Y. Yin, Nano Energy 43, 110 (2018)

    Article  Google Scholar 

  23. N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Edit. 54(21), 6251 (2015)

    Article  Google Scholar 

  24. J. Liu, T. Zhang, G. Meng, Y. Shao, F. Wang, Corros. Sci. 91, 232 (2015)

    Article  Google Scholar 

  25. J. Liu, T. Zhang, H. Li, Y. Zhao, F. Wang, X. Zhang, L. Cheng, K. Wu, J. Electrochem. Soc. 165(7), C328 (2018)

    Article  Google Scholar 

  26. E. Hamada, K. Yamada, M. Nagoshi, N. Makiishi, K. Sato, T. Ishii, K. Fukuda, S. Ishikawa, T. Ujiro, Corros. Sci. 52(12), 3851 (2010)

    Article  Google Scholar 

  27. L. Freire, M.A. Catarino, M.I. Godinho, M.J. Ferreira, M.G.S. Ferreira, A.M.P. Simoes, M.F. Montemor, Cem. Concr. Compos. 34(9), 1075 (2012)

    Article  Google Scholar 

  28. M.F. Montemor, A.M.P. Simoes, M.G.S. Ferreira, M. Da Cunha Belo, Corros. Sci. 41(1), 17 (1999)

    Article  Google Scholar 

  29. J.E. Castle, J.H. Qiu, Corros. Sci. 29(5), 591 (1989)

    Article  Google Scholar 

  30. T. Oshima, Y. Habara, K. Kuroda, ISIJ Int. 47(3), 359 (2007)

    Article  Google Scholar 

  31. H. Luo, C. Dong, K. Xiao, X. Li, RSC Adv. 6(12), 9940 (2016)

    Article  Google Scholar 

  32. Z.H. Jiang, J.P. Han, Y. Li, Mater. Res. Innov. 18(Suppl 5), S5 (2014)

    Google Scholar 

  33. T.J. Mesquita, E. Chauveau, M. Mantel, N. Kinsman, R.P. Nogueira, Mater. Chem. Phys. 126(3), 602 (2011)

    Article  Google Scholar 

  34. I. Betova, M. Bojinov, O. Hyoekyvirta, T. Saario, Corros. Sci. 52(4), 1499 (2010)

    Article  Google Scholar 

  35. C. Zhang, Z. Zhang, L. Liu, Electrochim. Acta 210, 401 (2016)

    Article  Google Scholar 

  36. B. Zhang, S. Hao, J. Wu, X. Li, C. Li, X. Di, Y. Huang, Mater. Charact. 131, 168 (2017)

    Article  Google Scholar 

  37. X. Zhang, J. Zhao, T. Xi, M.B. Shahzad, C. Yang, K. Yang, J. Mater. Sci. Tehcnol. 34, 2149 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the technology projects of State Grid Corporation (No. 52110417000N) and the National Science and Technology Major Project (No. 2016ZX05028-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, ZQ., Zhang, L. et al. Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 32, 585–598 (2019). https://doi.org/10.1007/s40195-018-0794-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0794-5

Keywords

Navigation