Fe-Based Powders Prepared by Ball-Milling with Considerable Degradation Efficiency to Methyl Orange Compared with Fe-Based Metallic Glasses

  • Sheng-Hui Xie
  • Guang-Qiang Peng
  • Xian-Meng Tu
  • Hai-Xia Qian
  • Xie-Rong Zeng
Article
  • 7 Downloads

Abstract

In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components were evaluated for methyl orange (MO). The results show that the structure is an essential factor that affects degradation, and added non-metallic elements help optimize the structure. The amorphous and balled-milled crystalline Fe70Si10B20 has comparative degradation efficiencies to MO with t1/2 values of 6.9 and 7.0 min, respectively. Increasing the boron content can create a favorable structure and promote degradation. The ball-milled crystalline Fe70B30 and Fe43.64B56.36 powders have relatively short t1/2 values of 5.2 and 3.3 min, respectively. The excellent properties are mainly attributed to their heterogeneous structure with boron-doped active sites in ZVI. Composition segregation in the nanoscale range in an amorphous FeSiB alloy and small boron particles in the microscale range embedded in large iron particles prepared by ball-milling, both constitute effective galvanic cells that promote iron electron loss and therefore decompose organic chemicals. These findings may provide a new, highly efficient, low-cost commercial method for azo dye wastewater treatment using ZVI.

Keywords

Fe-based powder Fe-based metallic glass Degradation Methyl orange Galvanic cell 

Notes

Acknowledgements

This work was financially supported by the Program of Introducing Innovative Research Team in Dongguan under Contract Number 2014607109 and Shenzhen Science and Technology Research Grants under Contract Numbers JCYJ20160422104921235, JCYJ20160422143659258 and JCYJ20160422144751573.

References

  1. [1]
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)CrossRefGoogle Scholar
  2. [2]
    İ. Arslan, I.A. Balcioǧlu, T. Tuhkanen, Chemosphere 39, 2767 (1999)CrossRefGoogle Scholar
  3. [3]
    R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, J. Taiwan Inst. Chem. Eng. 42, 138 (2011)CrossRefGoogle Scholar
  4. [4]
    K.T. Chung, J. Environ. Sci. Health C 34, 233 (2016)CrossRefGoogle Scholar
  5. [5]
    S.D. Kalme, G.K. Parshetti, S.U. Jadhav, S.P. Govindwar, Bioresour. Technol. 98, 1405 (2007)CrossRefGoogle Scholar
  6. [6]
    R. Sivaraj, C. Namasivayam, K. Kadirvelu, Waste Manag 21, 105 (2001)CrossRefGoogle Scholar
  7. [7]
    M. Punzi, A. Anbalagan, R. Aragão Börner, B.M. Svensson, M. Jonstrup, B. Mattiasson, Chem. Eng. J. 270, 290 (2015)CrossRefGoogle Scholar
  8. [8]
    P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Environ. Sci. Pollut. Res. 20, 2099 (2013)CrossRefGoogle Scholar
  9. [9]
    W. Feng, D. Nansheng, H. Helin, Chemosphere 41, 1233 (2000)CrossRefGoogle Scholar
  10. [10]
    Y. Liu, X. Chen, J. Li, C. Burda, Chemosphere 61, 11 (2005)CrossRefGoogle Scholar
  11. [11]
    Z. Xiao, Q. Zhou, H. Qin, J. Qiao, X. Guan, Desalin. Water Treat. 57, 1659 (2016)CrossRefGoogle Scholar
  12. [12]
    H. Liu, G. Li, J. Qu, H. Liu, J. Hazard. Mater. 144, 180 (2007)CrossRefGoogle Scholar
  13. [13]
    J. Fan, Y. Guo, J. Wang, M. Fan, J. Hazard. Mater. 166, 904 (2009)CrossRefGoogle Scholar
  14. [14]
    C. Zhang, H. Zhang, M. Lv, Z. Hu, J. Non. Cryst. Solids 356, 1703 (2010)CrossRefGoogle Scholar
  15. [15]
    B. Lin, X. Bian, P. Wang, G. Luo, Mater. Sci. Eng. B 177, 92 (2012)CrossRefGoogle Scholar
  16. [16]
    J.-Q. Wang, Y.-H. Liu, M.-W. Chen, G.-Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater. 22, 2567 (2012)CrossRefGoogle Scholar
  17. [17]
    S. Das, V. Bandi, H.S. Arora, M. Veligatla, S. Garrison, F. D’Souza, S. Mukherjee, J. Mater. Res. 30, 1121 (2015)CrossRefGoogle Scholar
  18. [18]
    Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, K.F. Yao, RSC Adv. 5, 34032 (2015)CrossRefGoogle Scholar
  19. [19]
    S. Xie, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, Sci. Rep. 6, 21947 (2016)CrossRefGoogle Scholar
  20. [20]
    R. Khan, S.W. Kim, T.J. Kim, C.M. Nam, Mater. Chem. Phys. 112, 167 (2008)CrossRefGoogle Scholar
  21. [21]
    J. Thibaud, Nature 121, 321 (1928)CrossRefGoogle Scholar
  22. [22]
    H.Y. Shu, M.C. Chang, H.H. Yu, W.H. Chen, J. Colloid Interface Sci. 314, 89 (2007)CrossRefGoogle Scholar
  23. [23]
    D.G. Tong, W. Chu, P. Wu, G.F. Gu, L. Zhang, J. Mater. Chem. A 1, 358 (2013)CrossRefGoogle Scholar
  24. [24]
    R. Fernandes, N. Patel, A. Miotello, M. Filippi, J. Mol. Catal. A Chem. 298, 1 (2009)CrossRefGoogle Scholar
  25. [25]
    R. Jain, N.S. Saxena, K.V.R. Rao, D.K. Avasthi, K. Asokan, Mater. Sci. Eng. A 297, 105 (2001)CrossRefGoogle Scholar
  26. [26]
    Q. Hu, X.R. Zeng, M.W. Fu, Appl. Phys. Lett. 97, 96 (2010)Google Scholar
  27. [27]
    K. Brzbzka, A. Slawska-waniewska, P. Nowicki, K. Jezuita, Mater. Sci. Eng. A 228, 654 (1997)CrossRefGoogle Scholar
  28. [28]
    L.J. Matheson, P.G. Tratnyek, Environ. Sci. Technol. 28, 2045 (1994)CrossRefGoogle Scholar
  29. [29]
    P.A. Thiel, T.E. Madey, Surf. Sci. Rep. 7, 211 (1987)CrossRefGoogle Scholar
  30. [30]
    W.H. Hung, J. Schwartz, S.L. Bernasek, Surf. Sci. Lett. 248, 332 (1991)CrossRefGoogle Scholar
  31. [31]
    S.M. Ponder, J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. Rao, Chem. Mater. 13, 479 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sheng-Hui Xie
    • 1
  • Guang-Qiang Peng
    • 1
  • Xian-Meng Tu
    • 1
  • Hai-Xia Qian
    • 1
  • Xie-Rong Zeng
    • 1
  1. 1.Shenzhen Key Laboratory of Special Functional Materials and Shenzhen Engineering Laboratory for Advance Technology of Ceramics, College of Materials Science and EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations