Rapid Ultrasonic-Assisted Soldering of AZ31B Mg Alloy/6061 Al Alloy with Low-Melting-Point Sn–xZn Solders Without Flux in Air

  • Zhi-Wei Lai
  • Zhe-Yuan Huang
  • Chuan Pan
  • Hui-Qiao Du
  • Xiao-Guang Chen
  • Lei Liu
  • Wei-Ming Long
  • Gui-Sheng Zou
Article
  • 7 Downloads

Abstract

A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–xZn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa at soldering temperature of 300 °C under ultrasonic assistance for only 5 s using Sn–20Zn solder. The fracture path propagates completely in the soldering seam. The results indicate that the microjet generated by ultrasonic pressure in liquid solder could strike and splinter the Mg2Sn intermetallic compounds into small pieces, which contributes to the enhancement of the joint strength. In addition, the primary Al(Zn) solid solution phase formed during cooling stage could also strengthen the joint due to the prevention of microcracks propagation.

Keywords

Ultrasonic-assisted soldering Ultrasonic effect mechanism Microjet Intermetallic compound distribution Solid solution Joint strengthening 

Notes

Acknowledgements

This work was supported financially by the State Key Laboratory of Advanced Brazing Filler Metals & Technology (No. SKLABFMT-2016-02), the CAST Innovation Fund Key Project and the National Natural Science Foundation of China (Nos. 51775299 and 51520105007).

References

  1. [1]
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 37, 280 (2000)Google Scholar
  2. [2]
    J. Liu, K. Zhao, M. Zhang, Y. Wang, L. An, Mater. Lett. 287, 143 (2015)Google Scholar
  3. [3]
    L. Liu, D. Ren, F. Liu, Materials 373, 67 (2014)Google Scholar
  4. [4]
    X.D. Qi, L.M. Liu, Mater. Des. 436, 33 (2012)Google Scholar
  5. [5]
    A. Masoudian, A. Tahaei, A. Shakiba, F. Sharifianjazi, J.A. Mohandesi, Trans. Nonferrous Met. Soc. China 1317, 24 (2014)Google Scholar
  6. [6]
    G. Mahendran, V. Balasubramanian, T. Senthilvelan, Mater. Des. 1240, 30 (2009)Google Scholar
  7. [7]
    S.S.S. Afghahi, M. Jafarian, M. Paidar, M. Jafarian, Trans. Nonferrous Met. Soc. China 1843, 26 (2016)Google Scholar
  8. [8]
    D.M. Fronczek, R. Chulist, L. Litynsk-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, J. Wojewoda-Budka, Mater. Des. 120, 130 (2017)Google Scholar
  9. [9]
    Z.L. Liu, X.C. Meng, S.D. Ji, Z.W. Li, L. Wang, J. Manuf. Process. 552, 31 (2018)Google Scholar
  10. [10]
    W.S. Liu, L.P. Long, Y.Z. Ma, L. Wu, J. Alloys Compd. 34, 643 (2015)Google Scholar
  11. [11]
    Y. Wang, P.B. Prangnell, Mater. Charact. 84, 134 (2017)Google Scholar
  12. [12]
    L.M. Liu, J.H. Tan, X.J. Liu, Mater. Lett. 2373, 61 (2007)Google Scholar
  13. [13]
    L.M. Liu, J.H. Tan, L.M. Zhao, X.J. Liu, Mater. Charact. 479, 59 (2008)Google Scholar
  14. [14]
    Z.W. Xu, L. Ma, J.C. Yan, S.Q. Yang, S.Y. Du, Compos. Part A 407, 43 (2012)Google Scholar
  15. [15]
    Z. Wang, H. Wang, L. Liu, Mater. Des. 14, 39 (2012)Google Scholar
  16. [16]
    C.T. Kwok, C.H. Man, F.T. Cheng, Mater. Sci. Eng. A 108, 242 (1998)Google Scholar
  17. [17]
    X.G. Chen, J.C. Yan, F. Gao, J. Wei, Ultrasonics Sonochem. 144, 20 (2013)Google Scholar
  18. [18]
    Z.W. Xu, J.C. Yan, G. Wu, X. Kong, S. Yang, Scr. Mater. 835, 53 (2005)Google Scholar
  19. [19]
    Y. Xiao, H.J. Ji, M.Y. Li, J.Y. Kim, H.B. Kim, Mater. Des. 717, 47 (2013)Google Scholar
  20. [20]
    Y. Zhang, J.C. Yan, X.G. Chen, Y. Cui, Trans. Nonferrous Met. Soc. China 726, 20 (2010)Google Scholar
  21. [21]
    R.S. Xie, X.G. Chen, Z.W. Lai, L. Liu, G.S. Zou, J.C. Yan, W.X. Wang, Mater. Des. 19, 91 (2016)Google Scholar
  22. [22]
    Z.Y. Huang, H.Q. Du, L. Liu, Z.W. Lai, X.G. Chen, W.M. Long, W.X. Wang, G.S. Zou, Ultrason. Sonochem. 101, 43 (2018)Google Scholar
  23. [23]
    Z. Lai, C. Pan, H. Du, X.G. Chen, R.S. Xie, L. Liu, W.M. Long, G.S. Zou, Sci. Technol. Weld. Join. 19, 23 (2018)Google Scholar
  24. [24]
    W. Guo, T. Luan, J. He, J.C. Yan, Mater. Des. 85, 125 (2017)Google Scholar
  25. [25]
    X.Y. Yu, W.Q. Xing, M. Ding, Ultrason. Sonochem. 216, 31 (2016)Google Scholar
  26. [26]
    W. Guo, T.M. Luan, J.S. He, J.C. Yan, Ultrason. Sonochem. 815, 40 (2018)Google Scholar
  27. [27]
    ASM International Handbook Committee, Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th edn. (ASM International, Materials Park Campus, 1990)Google Scholar
  28. [28]
    Y. Li, X. Leng, S. Cheng, J. Yan, Mater. Des. 427, 40 (2012)Google Scholar
  29. [29]
    K.S. Suslick, D.A. Hammerton, R.E. Cline, J. Am. Chem. Soc. 5641, 108 (1986)Google Scholar
  30. [30]
    X.G. Chen, R.S. Xie, Z.W. Lai, L. Liu, J.C. Yan, G.S. Zou, J. Mater. Sci. Technol. 492, 33 (2017)Google Scholar
  31. [31]
    E.A. Brujan, P.R. Williams, Chem. Eng. Res. Des. 293, 84 (2006)Google Scholar
  32. [32]
    Z. Zhang, H.M. Urbassek, Comput. Mater. Sci. 109, 145 (2018)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhi-Wei Lai
    • 1
    • 2
    • 3
  • Zhe-Yuan Huang
    • 2
    • 6
  • Chuan Pan
    • 3
  • Hui-Qiao Du
    • 4
  • Xiao-Guang Chen
    • 2
  • Lei Liu
    • 2
  • Wei-Ming Long
    • 5
  • Gui-Sheng Zou
    • 2
  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  3. 3.China Iron & Steel Research Institute GroupBeijingChina
  4. 4.Beijing Spacecraft Manufacturing FactoryBeijingChina
  5. 5.The State Key Laboratory of Advanced Brazing Filler Metals and TechnologyZhengzhou Research Institute of Mechanical EngineeringZhengzhouChina
  6. 6.College of Materials Science and Engineering, Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations