Skip to main content
Log in

Evolution of the Corrosion Product Film and Its Effect on the Erosion–Corrosion Behavior of Two Commercial 90Cu–10Ni Tubes in Seawater

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The composition and structural evolution of the corrosion product film of two commercial 90Cu–10Ni tubes, namely Tube A and Tube B, after being immersed in natural seawater for 1, 3, and 6 months were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and its effect on the erosion–corrosion behavior of the tubes was determined through a rotating cylinder electrode system using various electrochemical techniques. For the freshly polished samples used as contrast samples, the flow velocity mainly enhanced the cathodic reaction at low flow velocities while both the anodic and the cathodic reactions were remarkably accelerated at higher flow velocities. The corrosion product films formed on the two commercial 90Cu–10Ni tubes after being immersed in seawater for up to 6 months are of a complex three-layer or multilayer structure. The structural evolution of the films is out of sync for the two tubes. A continuous residual substrate layer depleted of Ni was observed in the inner layer of the films on Tube B after 30, 90, and 180 days’ immersion, while it was observed in the film on Tube A only after 180 days’ immersion. The nature of the inner layer plays a crucial role in the erosion–corrosion resistance of the 90Cu–10Ni tubes at higher flow velocity. The film with a compact and continuous inner layer of Cu2O doped with Ni2+ and Ni3+ which bonds firmly with the substrate could survive and even get repaired with the increased flow velocity. The film on Tube B possessing a hollow and discontinuous inner layer composed of the residual substrate was degraded rapidly with increasing rotation speed in spite of its quite good resistance at the stagnant or lower speed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. F. Mansfeld, G. Liu, H. Xiao, C.H. Tsai, B.J. Little, Corros. Sci. 36, 2063 (1994)

    Article  Google Scholar 

  2. W. Schleich, Typical Failures of CuNi 90/10 Seawater Tubing Systems and How to Avoid Them. In: Eurocorr, NACE. 1 (2004)

  3. S. Colin, E. Beche, R. Berjoan, H. Jolibois, A. Chambaudet, Corros. Sci. 41, 1051 (1999)

    Article  Google Scholar 

  4. K.D. Efird, Corrosion 31, 77 (1975)

    Article  Google Scholar 

  5. G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, J. Appl. Electrochem. 34, 659 (2004)

    Article  Google Scholar 

  6. R.F. North, M.J. Pryor, Corros. Sci. 10, 297 (1970)

    Article  Google Scholar 

  7. W.B. Brooks, Corrosion 24, 171 (1968)

    Article  Google Scholar 

  8. A.M. Beccaria, J. Crousier, Br. Corros. J. 26, 5 (1991)

    Article  Google Scholar 

  9. A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, Acta Metall. Sin. (Engl. Lett.) 27, 730 (2014)

    Article  Google Scholar 

  10. A.M. Beccaria, G. Poggi, P. Traverso, M. Ghiazza, Corros. Sci. 32, 1263 (1991)

    Article  Google Scholar 

  11. F.K. Crundwell, Electrochim. Acta 36, 2135 (1991)

    Article  Google Scholar 

  12. A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245 (2015)

    Article  Google Scholar 

  13. S.R. Allahkaram, P. Zakersafaee, S.A.M. Haghgoo, Eng. Fail. Anal. 18, 1108 (2011)

    Article  Google Scholar 

  14. K. Chandra, V. Kain, G.K. Dey, P.S. Shetty, R. Kishan, Eng. Fail. Anal. 17, 587 (2010)

    Article  Google Scholar 

  15. O. Elragei, F. Elshawesh, H.M. Ezuber, Desalin. Water Treat. 21, 17 (2010)

    Article  Google Scholar 

  16. B.C. Syrett, Corrosion 32, 242 (1976)

    Article  Google Scholar 

  17. M. Metikoš-Huković, I. Škugor, Z. Grubač, R. Babić, Electrochim. Acta 55, 3123 (2010)

    Article  Google Scholar 

  18. T. Hodgkiess, G. Vassiliou, Desalination 183, 235 (2005)

    Article  Google Scholar 

  19. M.S. Parvizi, A.A. Aladjem, J.E. Castle, Int. Mater. Rev. 33, 169 (1988)

    Article  Google Scholar 

  20. C.A. Powell, H.T. Michels, Copper–nickel alloys for seawater corrosion resistance and anti-fouling—a state of the art review. In: Paper Presented at the Conference of Corrosion NACE International, Orlando, Florida, 26–31 March 2000

  21. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  22. S.A. Campbell, G.J.W. Radford, C.D.S. Tuck, B.D. Barker, Corrosion 58, 57 (2002)

    Article  Google Scholar 

  23. W.A. Badawy, K.M. Ismail, A.M. Fathi, Electrochim. Acta 50, 3603 (2005)

    Article  Google Scholar 

  24. P.K. Chauhan, H.S. Gadiyar, Corros. Sci. 25, 55 (1985)

    Article  Google Scholar 

  25. L. Babouri, K. Belmokre, A. Abdelouas, J.F. Bardeau, Y. El Mendili, Int. J. Electrochem. Sci. 10, 7818 (2015)

    Google Scholar 

  26. B. Sun, T.Y. Ye, Q. Feng, J.H. Yao, M. Wei, Mater. Des. 8, 6029 (2015)

    Article  Google Scholar 

  27. G. Kear, B.D. Barker, K.R. Stokes, F.C. Walsh, Electrochim. Acta 52, 1889 (2007)

    Article  Google Scholar 

  28. R.J.K. Wood, S.P. Hutton, D.J. Schiffrin, Corros. Sci. 30, 1177 (1990)

    Article  Google Scholar 

  29. A.M. Naguib, Port. Electrochim. Acta 22, 301 (2005)

    Article  Google Scholar 

  30. Z.B. Zheng, Y.G. Zheng, X. Zhou, S.Y. He, W.H. Sun, J.Q. Wang, Corros. Sci. 88, 187 (2014)

    Article  Google Scholar 

  31. A. Neville, M. Reyes, T. Hodgkiess, A. Gledhill, Wear 238, 138 (2000)

    Article  Google Scholar 

  32. K. Sasaki, G.T. Burstein, Corros. Sci. 49, 92 (2007)

    Article  Google Scholar 

  33. G.D. Bengough, R.M. Jones, R. Pirret, J. Inst. Met. 23, 65 (1920)

    Google Scholar 

  34. S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276 (2007)

    Article  Google Scholar 

  35. P. Druska, H.H. Strehblow, Corros. Sci. 38, 1369 (1996)

    Article  Google Scholar 

  36. R.C.N. Liberto, R. Magnabosco, N. Alonso-Falleiros, Corros. Sci. 53, 1976 (2011)

    Article  Google Scholar 

  37. O.O. Ekerenam, A. Ma, Y. Zheng, W. Emori, J. Mater. Eng. Perform. 26, 1701 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601200) and the National Environmental Corrosion Platform (No. 2005DKA10400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Li Ma.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekerenam, O.O., Ma, AL., Zheng, YG. et al. Evolution of the Corrosion Product Film and Its Effect on the Erosion–Corrosion Behavior of Two Commercial 90Cu–10Ni Tubes in Seawater. Acta Metall. Sin. (Engl. Lett.) 31, 1148–1170 (2018). https://doi.org/10.1007/s40195-018-0745-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0745-1

Keywords

Navigation