Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 11, pp 1148–1170 | Cite as

Evolution of the Corrosion Product Film and Its Effect on the Erosion–Corrosion Behavior of Two Commercial 90Cu–10Ni Tubes in Seawater

  • Okpo O. Ekerenam
  • Ai-Li Ma
  • Yu-Gui Zheng
  • Si-Yu He
  • Peter C. Okafor
Article
  • 41 Downloads

Abstract

The composition and structural evolution of the corrosion product film of two commercial 90Cu–10Ni tubes, namely Tube A and Tube B, after being immersed in natural seawater for 1, 3, and 6 months were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and its effect on the erosion–corrosion behavior of the tubes was determined through a rotating cylinder electrode system using various electrochemical techniques. For the freshly polished samples used as contrast samples, the flow velocity mainly enhanced the cathodic reaction at low flow velocities while both the anodic and the cathodic reactions were remarkably accelerated at higher flow velocities. The corrosion product films formed on the two commercial 90Cu–10Ni tubes after being immersed in seawater for up to 6 months are of a complex three-layer or multilayer structure. The structural evolution of the films is out of sync for the two tubes. A continuous residual substrate layer depleted of Ni was observed in the inner layer of the films on Tube B after 30, 90, and 180 days’ immersion, while it was observed in the film on Tube A only after 180 days’ immersion. The nature of the inner layer plays a crucial role in the erosion–corrosion resistance of the 90Cu–10Ni tubes at higher flow velocity. The film with a compact and continuous inner layer of Cu2O doped with Ni2+ and Ni3+ which bonds firmly with the substrate could survive and even get repaired with the increased flow velocity. The film on Tube B possessing a hollow and discontinuous inner layer composed of the residual substrate was degraded rapidly with increasing rotation speed in spite of its quite good resistance at the stagnant or lower speed conditions.

Keywords

Copper–nickel alloy Seawater immersion Erosion–corrosion Corrosion product film Flow velocity 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51601200) and the National Environmental Corrosion Platform (No. 2005DKA10400).

References

  1. [1]
    F. Mansfeld, G. Liu, H. Xiao, C.H. Tsai, B.J. Little, Corros. Sci. 36, 2063 (1994)CrossRefGoogle Scholar
  2. [2]
    W. Schleich, Typical Failures of CuNi 90/10 Seawater Tubing Systems and How to Avoid Them. In: Eurocorr, NACE. 1 (2004)Google Scholar
  3. [3]
    S. Colin, E. Beche, R. Berjoan, H. Jolibois, A. Chambaudet, Corros. Sci. 41, 1051 (1999)CrossRefGoogle Scholar
  4. [4]
    K.D. Efird, Corrosion 31, 77 (1975)CrossRefGoogle Scholar
  5. [5]
    G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, J. Appl. Electrochem. 34, 659 (2004)CrossRefGoogle Scholar
  6. [6]
    R.F. North, M.J. Pryor, Corros. Sci. 10, 297 (1970)CrossRefGoogle Scholar
  7. [7]
    W.B. Brooks, Corrosion 24, 171 (1968)CrossRefGoogle Scholar
  8. [8]
    A.M. Beccaria, J. Crousier, Br. Corros. J. 26, 5 (1991)CrossRefGoogle Scholar
  9. [9]
    A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, Acta Metall. Sin. (Engl. Lett.) 27, 730 (2014)CrossRefGoogle Scholar
  10. [10]
    A.M. Beccaria, G. Poggi, P. Traverso, M. Ghiazza, Corros. Sci. 32, 1263 (1991)CrossRefGoogle Scholar
  11. [11]
    F.K. Crundwell, Electrochim. Acta 36, 2135 (1991)CrossRefGoogle Scholar
  12. [12]
    A.L. Ma, S.L. Jiang, Y.G. Zheng, W. Ke, Corros. Sci. 91, 245 (2015)CrossRefGoogle Scholar
  13. [13]
    S.R. Allahkaram, P. Zakersafaee, S.A.M. Haghgoo, Eng. Fail. Anal. 18, 1108 (2011)CrossRefGoogle Scholar
  14. [14]
    K. Chandra, V. Kain, G.K. Dey, P.S. Shetty, R. Kishan, Eng. Fail. Anal. 17, 587 (2010)CrossRefGoogle Scholar
  15. [15]
    O. Elragei, F. Elshawesh, H.M. Ezuber, Desalin. Water Treat. 21, 17 (2010)CrossRefGoogle Scholar
  16. [16]
    B.C. Syrett, Corrosion 32, 242 (1976)CrossRefGoogle Scholar
  17. [17]
    M. Metikoš-Huković, I. Škugor, Z. Grubač, R. Babić, Electrochim. Acta 55, 3123 (2010)CrossRefGoogle Scholar
  18. [18]
    T. Hodgkiess, G. Vassiliou, Desalination 183, 235 (2005)CrossRefGoogle Scholar
  19. [19]
    M.S. Parvizi, A.A. Aladjem, J.E. Castle, Int. Mater. Rev. 33, 169 (1988)CrossRefGoogle Scholar
  20. [20]
    C.A. Powell, H.T. Michels, Copper–nickel alloys for seawater corrosion resistance and anti-fouling—a state of the art review. In: Paper Presented at the Conference of Corrosion NACE International, Orlando, Florida, 26–31 March 2000Google Scholar
  21. [21]
    J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, New York, 1987)Google Scholar
  22. [22]
    S.A. Campbell, G.J.W. Radford, C.D.S. Tuck, B.D. Barker, Corrosion 58, 57 (2002)CrossRefGoogle Scholar
  23. [23]
    W.A. Badawy, K.M. Ismail, A.M. Fathi, Electrochim. Acta 50, 3603 (2005)CrossRefGoogle Scholar
  24. [24]
    P.K. Chauhan, H.S. Gadiyar, Corros. Sci. 25, 55 (1985)CrossRefGoogle Scholar
  25. [25]
    L. Babouri, K. Belmokre, A. Abdelouas, J.F. Bardeau, Y. El Mendili, Int. J. Electrochem. Sci. 10, 7818 (2015)Google Scholar
  26. [26]
    B. Sun, T.Y. Ye, Q. Feng, J.H. Yao, M. Wei, Mater. Des. 8, 6029 (2015)CrossRefGoogle Scholar
  27. [27]
    G. Kear, B.D. Barker, K.R. Stokes, F.C. Walsh, Electrochim. Acta 52, 1889 (2007)CrossRefGoogle Scholar
  28. [28]
    R.J.K. Wood, S.P. Hutton, D.J. Schiffrin, Corros. Sci. 30, 1177 (1990)CrossRefGoogle Scholar
  29. [29]
    A.M. Naguib, Port. Electrochim. Acta 22, 301 (2005)CrossRefGoogle Scholar
  30. [30]
    Z.B. Zheng, Y.G. Zheng, X. Zhou, S.Y. He, W.H. Sun, J.Q. Wang, Corros. Sci. 88, 187 (2014)CrossRefGoogle Scholar
  31. [31]
    A. Neville, M. Reyes, T. Hodgkiess, A. Gledhill, Wear 238, 138 (2000)CrossRefGoogle Scholar
  32. [32]
    K. Sasaki, G.T. Burstein, Corros. Sci. 49, 92 (2007)CrossRefGoogle Scholar
  33. [33]
    G.D. Bengough, R.M. Jones, R. Pirret, J. Inst. Met. 23, 65 (1920)Google Scholar
  34. [34]
    S.J. Yuan, S.O. Pehkonen, Corros. Sci. 49, 1276 (2007)CrossRefGoogle Scholar
  35. [35]
    P. Druska, H.H. Strehblow, Corros. Sci. 38, 1369 (1996)CrossRefGoogle Scholar
  36. [36]
    R.C.N. Liberto, R. Magnabosco, N. Alonso-Falleiros, Corros. Sci. 53, 1976 (2011)CrossRefGoogle Scholar
  37. [37]
    O.O. Ekerenam, A. Ma, Y. Zheng, W. Emori, J. Mater. Eng. Perform. 26, 1701 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Okpo O. Ekerenam
    • 1
    • 2
  • Ai-Li Ma
    • 1
  • Yu-Gui Zheng
    • 1
  • Si-Yu He
    • 1
  • Peter C. Okafor
    • 3
  1. 1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of Sciences (UCAS)BeijingChina
  3. 3.Department of Pure and Applied ChemistryUniversity of CalabarCalabarNigeria

Personalised recommendations