Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 515–522 | Cite as

Thermal Shock Behavior Analysis of Tungsten-Armored Plasma-Facing Components for Future Fusion Reactor

  • Shu-Ming Wang
  • Jiang-Shan Li
  • Yan-Xin Wang
  • Xiao-Fang Zhang
  • Qing Ye
Article
  • 11 Downloads

Abstract

In a fusion reactor, plasma-facing components (PFCs) will suffer severe thermal shock; behavior and performance of PFCs under high heat flux (HHF) loads are of major importance for the long-term stable operation of the reactor. This work investigates the thermo-mechanical behaviors of tungsten armor under high heat loads by the method of finite element modeling and simulating. The temperature distribution and corresponding thermal stress changing rule under different HHF are analyzed and deduced. The Manson–Coffin equation is employed to evaluate the fatigue lifetime (cyclic times of HHF loading) of W-armored first wall under cyclic HHF load. The results are useful for the formulation design and structural optimization of tungsten-armored PFCs for the future demonstration fusion reactor and China fusion experimental thermal reactor.

Keywords

Plasma-facing components Thermo-mechanical behavior High heat flux Tungsten armor Fatigue lifetime Finite element method 

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from the ITER-National Magnetic Confinement Fusion Program (Nos. 2014 GB123000 and 2010 GB109000) and the National Natural Science Foundation of China (No. 51172016).

References

  1. [1]
    B. He, B. Huang, Y. Xiao, Y.Y. Lian, X. Liu, J. Tang, J. Alloys Compd. 686, 298 (2016)CrossRefGoogle Scholar
  2. [2]
    W.Z. Tang, L. Yang, W. Zhu, Y.C. Zhou, J.W. Guo, C. Lu, J. Mater. Sci. Technol. 32, 452 (2016)CrossRefGoogle Scholar
  3. [3]
    L.L. Snead, T.D. Burchell, Y. Katoh, J. Nucl. Mater. 381, 55 (2008)CrossRefGoogle Scholar
  4. [4]
    T. Hirai, K. Ezato, P. Majerus, Mater. Trans. 46, 412 (2005)CrossRefGoogle Scholar
  5. [5]
    H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth, K. Sato, J. Nucl. Mater. 307–311, 43 (2002)CrossRefGoogle Scholar
  6. [6]
    R. Liu, Z.M. Xie, Q.F. Fang, T. Zhang, X.P. Wang, T. Hao, C.S. Liu, Y. Dai, J. Alloys Compd. 657, 73 (2016)CrossRefGoogle Scholar
  7. [7]
    M. Li, E. Werner, J.H. You, Nucl. Mater. Energy 2, 1 (2015)CrossRefGoogle Scholar
  8. [8]
    C.X. Sun, S.M. Wang, W.H. Guo, W.P. Shen, C.C. Ge, J. Mater. Sci. Technol. 30, 1230 (2014)CrossRefGoogle Scholar
  9. [9]
    A. Jafari, M. Ghoranneviss, S. Meshkani, J. Fusion. Energy 35, 306 (2016)CrossRefGoogle Scholar
  10. [10]
    M. Lipa, A. Durocher, R. Tivey, T. Hubber, B. Schedler, J. Weigert, Fusion Eng. Des. 75–79, 469 (2005)CrossRefGoogle Scholar
  11. [11]
    D.D. Qu, Z.J. Zhou, Y.J. Yum, J. Aktaa, J. Nucl. Mater. 455, 130 (2014)CrossRefGoogle Scholar
  12. [12]
    X. Chen, F. Ding, H. Mao, G. Luo, Z. Hu, F. Xu, G. Niu, M. Roeding, W. Kuehnlein, J. Linke, M. Merola, E. Rigal, B. Schedler, E. Visca, Fusion Eng. Des. 108, 98 (2016)CrossRefGoogle Scholar
  13. [13]
    G. Dell’Orco, P. Lorenzetto, A. Malavasi, G. Polazzi, M. Simoncini, G. Venturi, D. Zito, Fusion Eng. Des. 61–62, 117 (2002)CrossRefGoogle Scholar
  14. [14]
    T. Hirai, G. Pintsuk, Fusion Eng. Des. 82, 389 (2007)CrossRefGoogle Scholar
  15. [15]
    M. Roeding, W. Kuehnlein, J. Linke, M. Merola, E. Rigal, B. Schedler, E. Visca, Fusion Eng. Des. 61–62, 135 (2002)CrossRefGoogle Scholar
  16. [16]
    S.H. Huang, Y.Q. Zhao, W.H. Wang, Sci. China Technol. Sci. 59, 476 (2016)CrossRefGoogle Scholar
  17. [17]
    P. Gavila, B. Riccardi, G. Pintsuk, G. Ritz, V. Kuznetsov, A. Durocher, Fusion Eng. Des. 98–99, 1305 (2015)CrossRefGoogle Scholar
  18. [18]
    P. Lorenzetto, A. Cardella, W. Daenner, M. Febvre, A. Llzheofer, W. Richards, M. Roedig, Fusion Eng. Des. 61–62, 643 (2002)CrossRefGoogle Scholar
  19. [19]
    R.N. Giniyatulin, V.L. Komarov, E.G. Kuzmin, A.N. Makhankov, I.V. Mazul, N.A. Yablokov, A.N. Zhuk, Fusion Eng. Des. 61–62, 185 (2002)CrossRefGoogle Scholar
  20. [20]
    E. Madenci, I. Guven, The Finite Element Method and Applications in Engineering Using ANSYS ® (Springer, Berlin, 2015)CrossRefGoogle Scholar
  21. [21]
    Z. Jin, K. Yin, K. Yan, D. Wu, J. Liu, Z. Cui, J. Mater. Sci. Technol. 33, 1255 (2017)CrossRefGoogle Scholar
  22. [22]
    S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS (Pearson Education, Delhi, 2003)Google Scholar
  23. [23]
    ANSYS User’s Manual. (ANSYS Inc., Houston, 2005)Google Scholar
  24. [24]
    J.W. Davis, ITER Material Properties Handbook, Publication Package 3, S74RE1 97-08-01W1.6. (International Atomic Energy Agency, Vienna, 1997)Google Scholar
  25. [25]
    J.H. You, M. Miskiewicz, J. Nucl. Mater. 373, 269 (2008)CrossRefGoogle Scholar
  26. [26]
    Y.J. Hu, S.L. Shang, Y. Wang, K.A. Darling, B.G. Butler, L.J. Kecskes, Z.K. Liu, J. Alloys Compd. 671, 267 (2016)CrossRefGoogle Scholar
  27. [27]
    M.Y. Li, J.H. You, Fusion Eng. Des. 101, 1 (2015)CrossRefGoogle Scholar
  28. [28]
    S.H. Huang, Y.Q. Zhao, W.H. Wang, J. Fusion. Energy 34, 1465 (2015)CrossRefGoogle Scholar
  29. [29]
    ITER Director, ITER document G A0 FDR, (2001), pp. 20–39Google Scholar
  30. [30]
    F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, Forth edn. (Wiley, New York, 2002), pp. 459–463Google Scholar
  31. [31]
    Y. Wang, S. Wang, Q. Ye, Q. Yan, C. Ge, J. Mater. Sci. Technol. 32, 1386 (2016)CrossRefGoogle Scholar
  32. [32]
    G. Halford, S.S. Manson, A method of estimating high temperature low cycle fatigue behavior of materials. U.S. Patent no. NASA-TM-X-52770Google Scholar
  33. [33]
    N. Jaksic, H. Greuner, A. Herrmann, Fusion Eng. Des. 88, 1789 (2013)CrossRefGoogle Scholar
  34. [34]
    D.H. Lassila, G.T. Gray III, J. Phys. IV. 4, 354 (1994)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shu-Ming Wang
    • 1
  • Jiang-Shan Li
    • 1
  • Yan-Xin Wang
    • 1
  • Xiao-Fang Zhang
    • 1
  • Qing Ye
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations