Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 4, pp 423–430 | Cite as

Structural Evolution During Mechanical Milling of Bimodal-Sized Al2O3 Particles Reinforced Aluminum Matrix Composite

  • Ke Zhao
  • Dan Tang
  • Jin-Ling Liu
  • Yi-Guang Wang


Hybrid aluminum matrix composite powders reinforced with bimodal-sized Al2O3 particles were synthesized by mechanical milling. Two different approaches were investigated for the addition of submicron- and nano-sized Al2O3 particles to the aluminum powders. It was observed that the simultaneous addition of bimodal-sized Al2O3 particles to the aluminum powders resulted in an equiaxed morphology of the composite powders and the average particle size stabilized after 5 h of milling, indicating that the presence of bimodal-sized particles has greater effect on accelerating milling process as compared to nano-sized particles; the grain size of the aluminum matrix in composite powders was reduced to under 40 nm, approximate to the value obtained in the separate addition case, while a lower rate of refining was observed due to hindrance of submicron-sized particles on the interactions between nano-sized particles and the aluminum matrix.


Bimodal-sized Aluminum matrix composite Mechanical milling Grain refinement 



The authors greatly acknowledge the financial support from the State Key Laboratory of Traction Power (Grant No. 2015TPL_Z01), the State Key Laboratory of Solidification Processing (Grant Nos. 82-TZ-2013 and SKLSP201609), the Fundamental Research Funds for the Central Universities (Grant No. 2682017CX090), and the “111” Project (B08040).


  1. [1]
    A. Mortensen, J. Llorca, Annu. Rev. Mater. Res. 40, 243 (2010)CrossRefGoogle Scholar
  2. [2]
    A. Abdollahi, A. Alizadeh, H.R. Baharvandi, Mater. Sci. Eng., A 608, 139 (2014)CrossRefGoogle Scholar
  3. [3]
    M. Alizadeh, M. Alizadeh, R. Amini, J. Mater. Sci. Technol. 29, 725 (2013)CrossRefGoogle Scholar
  4. [4]
    L. Lu, M.O. Lai, C.W. Ng, Mater. Sci. Eng., A 252, 203 (1998)CrossRefGoogle Scholar
  5. [5]
    M.R. Rezaei, S.G. Shabestari, S.H. Razavi, J. Mater. Sci. Technol. 33, 1031 (2017)CrossRefGoogle Scholar
  6. [6]
    J.H. Nie, J.Z. Fan, S.M. Zhang, S.H. Wei, T. Zuo, Z.L. Ma, Z.B. Xiang, Acta Metall. Sin. (Engl. Lett.) 27, 875 (2014)CrossRefGoogle Scholar
  7. [7]
    M. Tavoosi, F. Karimzadeh, M.H. Enayati, Mater. Lett. 62, 282 (2008)CrossRefGoogle Scholar
  8. [8]
    L.J. Zhang, F. Qiu, J.G. Wang, Q.C. Jiang, Mater. Sci. Eng., A 626, 338 (2015)CrossRefGoogle Scholar
  9. [9]
    D.S. Zhou, F. Qiu, Q.C. Jiang, Mater. Sci. Eng., A 596, 98 (2014)CrossRefGoogle Scholar
  10. [10]
    A. Alizadeh, E. Taheri-Nassaj, M. Hajizamani, J. Mater. Sci. Technol. 27, 189 (2015)Google Scholar
  11. [11]
    J.C. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, J.M. Schoenung, Scr. Mater. 53, 481 (2005)CrossRefGoogle Scholar
  12. [12]
    B. VijayaRamnath, C. Elanchezhian, M. Jaivignesh, S. Rajesh, C. Parswajinan, A.S.A. Ghias, Mater. Des. 58, 332 (2014)CrossRefGoogle Scholar
  13. [13]
    I. Ozdemir, S. Ahrens, S. Mücklich, B. Wielage, J. Mater. Process. Technol. 205, 111 (2008)CrossRefGoogle Scholar
  14. [14]
    M. TabandehKhorshid, S.A. JenabaliJahromi, M.M. Moshksar, Mater. Des. 31, 3880 (2010)CrossRefGoogle Scholar
  15. [15]
    L.J. Zhang, F. Qiu, J.G. Wang, H.Y. Wang, Q.C. Jiang, Mater. Sci. Eng., A 637, 70 (2015)CrossRefGoogle Scholar
  16. [16]
    Z. RazaviHesabi, A. Simchi, S.M. SeyedReihani, Mater. Sci. Eng., A 428, 159 (2006)CrossRefGoogle Scholar
  17. [17]
    B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Mater. Sci. Eng., A 425, 192 (2006)CrossRefGoogle Scholar
  18. [18]
    K.A. Annelise, P.B. Carlos, A.B. Felipe, Novel Synthesis and Characterization of Nanostructured Materials (Springer, Berlin, 2013)Google Scholar
  19. [19]
    J.B. Fogagnolo, F. Velasco, M.H. Robert, J.M. Torralba, Mater. Sci. Eng., A 342, 131 (2003)CrossRefGoogle Scholar
  20. [20]
    C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001)CrossRefGoogle Scholar
  21. [21]
    S.S. RazaviTousi, R. Yazdani Rad, E. Salahi, I. Mobasherpour, M. Razavi, Powder Technol. 192, 346 (2009)CrossRefGoogle Scholar
  22. [22]
    C. Suryanarayana, N. Al-Aqeeli, Prog. Mater Sci. 58, 383 (2013)CrossRefGoogle Scholar
  23. [23]
    M. Khakbiz, F. Akhlaghi, J. Alloys Compd. 479, 334 (2009)CrossRefGoogle Scholar
  24. [24]
    J.L.H. Rivera, J.J.C. Rivera, V.P. del Ángel, V.G. Febles, O.C. Alonso, R. Martínez-Sánchez, Mater. Des. 37, 96 (2012)CrossRefGoogle Scholar
  25. [25]
    R. Gostariani, R. Ebrahimi, M.A. Asadabad, M.H. Paydar, Acta Metall. Sin. (Engl. Lett.) (2017). Google Scholar
  26. [26]
    K.H. Chung, J.H. He, D.H. Shin, J.M. Schoenung, Mater. Sci. Eng., A 356, 23 (2003)CrossRefGoogle Scholar
  27. [27]
    L. Lu, M.O. Lai, W. Liang, Compos. Sci. Technol. 64, 2009 (2004)CrossRefGoogle Scholar
  28. [28]
    Y. Saberi, S.M. Zebarjad, G.H. Akbari, J. Alloys Compd. 484, 637 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ke Zhao
    • 1
  • Dan Tang
    • 1
  • Jin-Ling Liu
    • 2
    • 3
  • Yi-Guang Wang
    • 1
  1. 1.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anChina
  2. 2.State Key Laboratory of Traction Power, School of Mechanics and EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.Applied Mechanics and Structure Safety Key Laboratory of Sichuan ProvinceSouthwest Jiaotong UniversityChengduChina

Personalised recommendations