Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 113–126 | Cite as

Interpretation of the Habit Plane of δ Precipitates in Superalloy Inconel 718

Article
  • 138 Downloads

Abstract

A calculation method based on a combination of g parallelism rule, good matching site (GMS) analysis, CSL/DSCL (coincidence site lattice/displacement shift complete lattice) and the O-lattice theory has been applied to interpret the observation of the habit plane (HP) of the δ precipitates and the linear defects in the HP in an Inconel 718 superalloy. The small scattering in the HP orientation around an ideal rational plane is interpreted by the existence of a mixture of two types of steps with different heights and inclinations. These steps play a significant role to enhance the degree of matching in the HP. They are associated with secondary dislocations, with Burgers vectors of \(1/6\left[ {1\;1\;\bar{2}} \right]_{\gamma } / 1/3[0\;0\;1]_{\delta }\), and with a direction parallel to a near-invariant line along \([1\;\bar{1}\;0]_{\gamma }\). The spacing of the secondary dislocations projected on the terrace plane is around 6.3 nm. The calculated dislocation structure is in good agreement with the observation.

Keywords

Good matching site Dislocation Orientation relationship Interfacial structure Coincident site lattice 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51671111) and the National Key Research and Development Program of China (Grant No. 2016YFB0701304). The authors wish to express thanks to Mr. Zhipeng Sun and Jinyu Zhang for their helpful discussions.

References

  1. [1].
    J.H. Du, X.D. Lü, J.L. Qu, Q. Deng, J.Y. Zhuang, Z.Y. Zhong, Acta Metall. Sin. (Engl. Lett.) 19, 418 (2006)CrossRefGoogle Scholar
  2. [2].
    J.F. Barker, E.W. Ross, J.F. Radavich, JOM 22, 31 (1970)CrossRefGoogle Scholar
  3. [3].
    L. Liu, C. Zhai, C. Lu, W. Ding, A. Hirose, K.F. Kobayashi, J. Mater. Sci. Technol. 47, 355 (2005)Google Scholar
  4. [4].
    J.H. Du, X.D. Lu, Q. Deng, J.L. Qu, J.Y. Zhuang, Z.Y. Zhong, Mat. Sci. Eng. A 452, 584 (2007)CrossRefGoogle Scholar
  5. [5].
    L.C.M. Valle, L.S. Araujo, S.B. Gabriel, J. Dille, L.H. de Almeida, J. Mater. Eng. Perform. 22, 1512 (2013)CrossRefGoogle Scholar
  6. [6].
    Z.S. Yu, J.X. Zhang, Y. Yuan, R.C. Zhou, H.J. Zhang, H.Z. Wang, Mater. Sci. Eng. A 634, 55 (2015)CrossRefGoogle Scholar
  7. [7].
    I. Kirman, D.H. Warrington, Metall. Mater. Trans. B 1, 2667 (1970)Google Scholar
  8. [8].
    I. Kirman, J. Iron Steel Inst. 207, 1612 (1969)Google Scholar
  9. [9].
    Y.G. Nakagawa, G.C. Weatherly, Mater. Sci. Eng. 10, 223 (1972)CrossRefGoogle Scholar
  10. [10].
    M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Metall. Mater. Trans. A 19, 453 (1988)CrossRefGoogle Scholar
  11. [11].
    Q. Liang, W.T. Reynolds, Metall. Mater. Trans. A 29, 2059 (1998)CrossRefGoogle Scholar
  12. [12].
    W.Z. Zhang, Metall. Mater. Trans. A 44, 4513 (2013)CrossRefGoogle Scholar
  13. [13].
    W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970)CrossRefGoogle Scholar
  14. [14].
    W. Bollmann, Crystal Lattices, Interfaces, Matrices (Bollmann, Geneva, 1982)Google Scholar
  15. [15].
    C.M. Wayman, Introduction to the Crystallography of Martensitic Transformations (Macmillan, New York, 1964)Google Scholar
  16. [16].
    W.Z. Zhang, Z.P. Sun, J.Y. Zhang, Z.Z. Shi, H. Shi, J. Mater. Sci. 53, 4253 (2017)CrossRefGoogle Scholar
  17. [17].
    R.C. Pond, S. Celotto, J.P. Hirth, Acta Mater. 51, 5385 (2003)CrossRefGoogle Scholar
  18. [18].
    M.X. Zhang, P.M. Kelly, Acta Mater. 46, 4617 (1998)CrossRefGoogle Scholar
  19. [19].
    P. Kelly, M.X. Zhang, Mater. Forum 23, 41 (1999)Google Scholar
  20. [20].
    W.Z. Zhang, G.C. Weatherly, Prog. Mater. Sci. 50, 181 (2005)CrossRefGoogle Scholar
  21. [21].
    U. Dahmen, Acta Metall. 30, 63 (1982)CrossRefGoogle Scholar
  22. [22].
    F. Ye, W.Z. Zhang, Acta Mater. 50, 2761 (2002)CrossRefGoogle Scholar
  23. [23].
    W.Z. Zhang, F. Ye, C. Zhang, Y. Qi, H.S. Fang, Acta Mater. 48, 2209 (2000)CrossRefGoogle Scholar
  24. [24].
    C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II (Wiley-Interscience, New York, 1987)Google Scholar
  25. [25].
    S.Q. Xiao, J.M. Howe, Acta Mater. 48, 3253 (2000)CrossRefGoogle Scholar
  26. [26].
    J. Wu, W.Z. Zhang, X.F. Gu, Acta Mater. 57, 635 (2009)CrossRefGoogle Scholar
  27. [27].
    W.Z. Zhang, Appl. Phys. Lett. 86, 121919 (2005)CrossRefGoogle Scholar
  28. [28].
    X.P. Yang, W.Z. Zhang, Sci. China Technol. Sci. 55, 1343 (2012)CrossRefGoogle Scholar
  29. [29].
    J.M. Rigsbee, H.I. Aaronson, Acta Metall. 27, 351 (1979)CrossRefGoogle Scholar
  30. [30].
    J.W. Christian, The Theory of Transformations in Metals and Alloys (Elsevier Science, Oxford, 2002)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials (MOE), School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Oxford Instruments Beijing OfficeBeijingChina

Personalised recommendations