Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 523–532 | Cite as

Enhancing Wear Resistance of A356 Alloy by Adding CNFs Based on Ultrasonic Vibration Casting

  • Qing-Jie Wu
  • Hong Yan
  • Peng-Xiang Zhang
  • Xue-Qin Zhu
  • Qiao Nie
Article

Abstract

A356–carbon nanofibers (CNFs) composites with different contents of CNFs were fabricated by ultrasonic vibration casting to investigate the effect of CNFs in the matrix on the mechanical properties and wear resistance. The worn surfaces were investigated using scanning electron microscopy (SEM). As the CNFs content was increased, strength, hardness and wear resistance were significantly enhanced and the coefficient of friction was extremely reduced. The nanocomposite containing 1.2 wt% of CNFs exhibited more than 109 HV in hardness and less than 0.35 in the coefficient of friction. Compared with the as-cast matrix, the wear rate of the optimal composite was less than one-third of the matrix sample and the microhardness exhibited about 47% enhancement of the matrix. Meanwhile, steadier and lower friction coefficient was also achieved by the composite. CNFs were observed to be either partially or fully crushed forming a carbon film that covered the surface and acted as a solid lubricant, enhancing the wear behavior significantly.

Keywords

A356 matrix composites Carbon nanofibers Wear testing 

Notes

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 51364035) and the Natural Science Foundation of Jiangxi Province (No. 20171BAB206034).

References

  1. [1]
    M.S. Silva, C. Barbosa, O. Acselrad, L.C. Pereira, J. Mater. Eng. Perform. 13(2), 129 (2004)CrossRefGoogle Scholar
  2. [2]
    R.G. Guan, T. Di, Acta Metall. Sin. (Engl. Lett.) 30(5), 409 (2017)CrossRefGoogle Scholar
  3. [3]
    D. Zhou, F. Qiu, H. Wang, Q. Jiang, Acta Metall. Sin. (Engl. Lett.) 27(5), 798 (2014)CrossRefGoogle Scholar
  4. [4]
    T. Miyajima, Y.I. Wai, Wear 255(1), 606 (2003)CrossRefGoogle Scholar
  5. [5]
    R.C. Shivamurthy, M.K. Surappa, Wear 271(9), 1946 (2011)CrossRefGoogle Scholar
  6. [6]
    A.M. Al-Qutub, I.M. Allam, T.W. Qureshi, J. Mater. Process. Technol. 172(3), 327 (2006)CrossRefGoogle Scholar
  7. [7]
    D. Mandal, B.K. Dutta, S.C. Panigrahi, Wear 265(5), 930 (2008)CrossRefGoogle Scholar
  8. [8]
    F.S. Rashed, T.S. Mahmoud, Tribol. Int. 42(5), 642 (2009)CrossRefGoogle Scholar
  9. [9]
    F. Tang, X. Wu, S. Ge, J. Ye, H. Zhu, Wear 264(7), 555 (2008)CrossRefGoogle Scholar
  10. [10]
    K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis, Wear 256(11), 1176 (2004)CrossRefGoogle Scholar
  11. [11]
    G. Fan, Z. Yu, Z. Tan, Z. Li, D. Zhang, Acta Metall. Sin. (Engl. Lett.) 27(5), 839 (2014)CrossRefGoogle Scholar
  12. [12]
    A.M. Al-Qutub, A. Khalil, N. Saheb, A.S. Hakeem, Wear 297(1–2), 752 (2013)CrossRefGoogle Scholar
  13. [13]
    S. Zhou, X. Zhang, Z. Ding, C. Min, G. Xu, W. Zhu, Compos. Part A Appl. Sci. Manuf. 38(2), 301 (2008)CrossRefGoogle Scholar
  14. [14]
    I.Y. Kim, J.H. Lee, G.S. Lee, S.H. Baika, Y.J. Kimb, Y.Z. Leea, Wear 267(1–4), 593 (2009)CrossRefGoogle Scholar
  15. [15]
    X.H. Chen, H. Yan, J. Mater. Res. 30(14), 2197 (2015)CrossRefGoogle Scholar
  16. [16]
    C. Sautera, M.A. Emin, H.P. Schuchmann, S. Tavman, Ultrason. Sonochem. 15(5), 517 (2008)CrossRefGoogle Scholar
  17. [17]
    H. Yan, H.X. Qiu, J. Mater. Res. 31(15), 2276 (2016)CrossRefGoogle Scholar
  18. [18]
    C.N. He, C. Feng, J.C. Lin, E.Z. Liu, C.S. Shi, J.J. Li, N.Q. Zhao, Acta Metall. Sin. (Engl. Lett.) 29(2), 188 (2016)CrossRefGoogle Scholar
  19. [19]
    H. Yan, Z.X. Huang, H.X. Qiu, Metall. Mater. Trans. A 48(2), 910 (2017)CrossRefGoogle Scholar
  20. [20]
    C.D. Li, X.J. Wang, W.Q. Liu, K. Wu, H.L. Shi, C. Ding, X.S. Hu, M.Y. Zheng, Mater. Sci. Eng., A 597(8), 264 (2014)CrossRefGoogle Scholar
  21. [21]
    H. Yan, Z.W. Wang, J. Rare Earth 34(3), 308 (2016)CrossRefGoogle Scholar
  22. [22]
    H. Kwon, G.G. Lee, S.G. Kim, B.W. Lee, W.C. Seo, L. Marc, Mater. Sci. Eng., A 632, 72 (2015)CrossRefGoogle Scholar
  23. [23]
    A. Mazahery, M.O. Shabani, Trans. Nonferrous Met. Soc. China 23(7), 1905 (2013)CrossRefGoogle Scholar
  24. [24]
    C.C. Chen, G. Chen, H.G. Yan, B. Su, Chin. J. Nonferrous Metal. 21(6), 1258 (2011)Google Scholar
  25. [25]
    P.K. Rohargl, R.Q. Guo, P. Huang, S. Ray, Metall. Mater. Trans. A 28(1), 245 (1997)CrossRefGoogle Scholar
  26. [26]
    D. Cree, M. Pugh, Wear 272(1), 88 (2011)CrossRefGoogle Scholar
  27. [27]
    H.J. Choi, S.M. Lee, D.H. Bae, Wear 270(1), 12 (2010)CrossRefGoogle Scholar
  28. [28]
    I. Kim, J. Lee, G. Lee, S. Baik, Y. Kim, Y. Lee, Wear 267(1), 593 (2009)CrossRefGoogle Scholar
  29. [29]
    M.M.H. Bastwros, A.M.K. Esawi, A. Wifi, Wear 307(1), 164 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Qing-Jie Wu
    • 1
    • 2
  • Hong Yan
    • 1
    • 2
  • Peng-Xiang Zhang
    • 1
    • 2
  • Xue-Qin Zhu
    • 1
    • 2
  • Qiao Nie
    • 3
  1. 1.School of Mechanical and Electrical EngineeringNanchang UniversityNanchangChina
  2. 2.Key Laboratory of Light Alloy Preparation and Processing in Nanchang CityNanchangChina
  3. 3.Jiangxi Ling-Ge Non-ferrous Metal Processing Co., Ltd.NanchangChina

Personalised recommendations