Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 127–133 | Cite as

High-Temperature Structural Stabilities of Ni-Based Single-Crystal Superalloys Ni–Co–Cr–Mo–W–Al–Ti–Ta with Varying Co Contents

  • Yu Zhang
  • Qing Wang
  • Hong-Gang Dong
  • Chuang Dong
  • Hong-Yu Zhang
  • Xiao-Feng Sun


It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glue-atom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like (\( \overline{\text{Ni}} \)), γ′-forming Cr-like (\( \overline{\text{Cr}}^{{\gamma^{\prime } }} \)) and γ-forming Cr-like (\( \overline{\text{Cr}}^{\gamma } \)), the optimal formula for single-crystal superalloys is established [Al–\( \overline{\text{Ni}} \) 12](Al1 \( \overline{\text{Cr}}^{{\gamma^{\prime } }}_{0.5} \overline{\text{Cr}}^{\gamma }_{1.5} \)). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al–Ni12−x Co x ](Al1Ti0.25Ta0.25Cr1W0.25Mo0.25), with x = 1.5, 1.75, 2 and 2.5 (the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The 900 °C long-term aging follows the Lifshitz–Slyozov–Wagner theory (LSW theory), and the Co content does not have noticeable influence on the coarsening rate of γ′. The microstructure and creep behavior of the four (001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co (9.43 Co) shows the longest lifetime of about 350 h at 1050 °C/120 MPa, and all the samples show N-type rafting after creep tests.


Nickel-based single-crystal superalloys Cluster-plus-glue-atom model Composition formula Co 



This work is financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701401) and the National Natural Science Foundation of China (No. 11674045).


  1. [1]
    P. Caron, T. Khan, Aerosp. Sci. Technol. 3, 513 (1999)CrossRefGoogle Scholar
  2. [2]
    Z.J. Zhou, D.Q. Yu, L. Wang, L.H. Lou, Acta Metall. Sin. (Engl. Lett.) 30, 185 (2017)CrossRefGoogle Scholar
  3. [3]
    H.T. Li, Y.C. Liang, W.L. Zhong, X.Z. Qin, J.T. Guo, L.Z. Zhou, W.L. Ren, Acta Metall. Sin. (Engl. Lett.) 30, 280 (2017)CrossRefGoogle Scholar
  4. [4]
    S.H. Liu, M.R. Wen, Z. Li, W.Q. Liu, P. Yan, C.Y. Wang, Mater. Des. 130, 157 (2017)CrossRefGoogle Scholar
  5. [5]
    W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 479, 148 (2008)CrossRefGoogle Scholar
  6. [6]
    S.G. Tian, X.J. Zhu, J. Wu, H.C. Yu, D.L. Shu, B.J. Qian, J. Mater. Sci. Technol. 32, 790 (2016)CrossRefGoogle Scholar
  7. [7]
    L. Qin, Y.L. Pei, S.S. Li, X.B. Zhao, S.K. Gong, H.B. Xu, Mater. Des. 130, 69 (2017)CrossRefGoogle Scholar
  8. [8]
    S. Walston, A. Cetel, R. Mackay, K.O. Hara, D. Duhl, R. Dreshfield, in Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.W. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 15Google Scholar
  9. [9]
    L. Erickson, in Superalloys, ed. by D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (TMS, Champion, 1996), p. 35Google Scholar
  10. [10]
    H. Murakami, T. Yamagata, H. Harada, M. Yamazaki, Mater. Sci. Eng. A 223, 54 (1997)CrossRefGoogle Scholar
  11. [11]
    E.C. Caldwell, F.J. Fela, G.E. Fuchs, in Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 818Google Scholar
  12. [12]
    Y. Mishima, S. Ochiai, T. Suzuki, Acta Metall. 33, 1161 (1985)CrossRefGoogle Scholar
  13. [13]
    R.C. Reed, The Superalloys Fundamentals and Applications (Cambridge University Press, New York, 2006), pp. 33–120CrossRefGoogle Scholar
  14. [14]
    L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock, Mater. Sci. Eng. A 457, 292 (2007)CrossRefGoogle Scholar
  15. [15]
    J.R. Li, J.C. Xiong, D.Z. Tang, Advanced High Temperature Structural Materials and Technology (I) (National Defence Industry Press, Beijing, 2012), pp. 100–198. (in Chinese) Google Scholar
  16. [16]
    B. Wang, J. Zhang, T.W. Huang, W.C. Yang, H.J. Su, Z.R. Li, L. Liu, H.Z. Fu, J. Mater. Res. 32, 1328 (2016)CrossRefGoogle Scholar
  17. [17]
    B.B. Jiang, Q. Wang, C. Dong, Acta Phys. Sin. 66, 026102 (2017). (in Chinese) Google Scholar
  18. [18]
    H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 4, 7065 (2014)CrossRefGoogle Scholar
  19. [19]
    H.L. Hong, C. Dong, Q. Wang, Y. Zhang, Y.X. Geng, Acta Phys. Sin. 65, 36101 (2016). (in Chinese) Google Scholar
  20. [20]
    H.L. Hong, Q. Wang, C. Dong, Sci. China Mater. 28, 355 (2015)CrossRefGoogle Scholar
  21. [21]
    H.M. Li, Y.J. Zhao, X.N. Li, D.Y. Zhou, C. Dong, J. Phys. D Appl. Phys. 49, 035306 (2016)CrossRefGoogle Scholar
  22. [22]
    B.B. Jiang, Q. Wang, X.N. Li, C. Dong, F. Xu, H. He, L.X. Sun, Metall. Mater. Trans. A 48, 3912 (2017)CrossRefGoogle Scholar
  23. [23]
    Q. Wang, Q. Li, X.N. Li, R.Q. Zhang, X.X. Gao, C. Dong, P.K. Liao, Metall. Mater. Trans. A 46, 3924 (2015)CrossRefGoogle Scholar
  24. [24]
    Q. Wang, C. Dong, P.K. Liao, Metall. Mater. Trans. A 46, 3440 (2015)CrossRefGoogle Scholar
  25. [25]
    C. Pang, B.B. Jiang, Y. Shi, Q. Wang, C. Dong, J. Alloys Compd. 652, 63 (2015)CrossRefGoogle Scholar
  26. [26]
    C. Pang, Q. Wang, R.Q. Zhang, Q. Li, X. Dai, C. Dong, P.K. Liao, Mater. Sci. Eng. A 626, 369 (2015)CrossRefGoogle Scholar
  27. [27]
    S.N. Qian, C. Dong, Acta Phys. Sin. 66, 136103 (2017). (in Chinese) Google Scholar
  28. [28]
    Q. Wang, Q.F. Zha, E.X. Liu, C. Dong, X.J. Wang, C.X. Tan, C.J. Ji, Acta Metall. Sin. (in Chinese) 48, 1201 (2012).CrossRefGoogle Scholar
  29. [29]
    M.L. Huang, Y.C. Yang, Y. Chen, C. Dong, Mater. Sci. Eng. A 664, 221 (2016)CrossRefGoogle Scholar
  30. [30]
    Q. Wang, Y. Ma, B.B. Jiang, X.N. Li, Y. Shi, C. Dong, P.K. Liaw, Scr. Mater. 120, 85 (2016)CrossRefGoogle Scholar
  31. [31]
    Y. Ma, B.B. Jiang, C.L. Li, Q. Wang, C. Dong, P.K. Liao, F. Xu, L.X. Sun, Metals 7, 57 (2017)CrossRefGoogle Scholar
  32. [32]
    J.J. Yu, Q. Wang, X.N. Li, Y. Shi, C. Dong, C.J. Ji, X.M. Xu, Trans. Mater. Heat Treat. 34, 184 (2013). (in Chinese) Google Scholar
  33. [33]
    A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)CrossRefGoogle Scholar
  34. [34]
    Z.H. Yao, J.X. Dong, M.C. Zhang, H. Chen, Q.Y. Yu, Mater. Mech. Eng. 6, 67 (2015). (in Chinese) Google Scholar
  35. [35]
    M. Wang, B. Chen, X.C. Hao, Y.C. Ma, K. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 771 (2017)CrossRefGoogle Scholar
  36. [36]
    S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng, J. Mater. Sci. Technol. 32, 172 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yu Zhang
    • 1
  • Qing Wang
    • 1
  • Hong-Gang Dong
    • 1
  • Chuang Dong
    • 1
  • Hong-Yu Zhang
    • 2
  • Xiao-Feng Sun
    • 2
  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology)Ministry of EducationDalianChina
  2. 2.Superalloys Division, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations