Skip to main content

Advertisement

Log in

High-Temperature Structural Stabilities of Ni-Based Single-Crystal Superalloys Ni–Co–Cr–Mo–W–Al–Ti–Ta with Varying Co Contents

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glue-atom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like (\( \overline{\text{Ni}} \)), γ′-forming Cr-like (\( \overline{\text{Cr}}^{{\gamma^{\prime } }} \)) and γ-forming Cr-like (\( \overline{\text{Cr}}^{\gamma } \)), the optimal formula for single-crystal superalloys is established [Al–\( \overline{\text{Ni}} \) 12](Al1 \( \overline{\text{Cr}}^{{\gamma^{\prime } }}_{0.5} \overline{\text{Cr}}^{\gamma }_{1.5} \)). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al–Ni12−x Co x ](Al1Ti0.25Ta0.25Cr1W0.25Mo0.25), with x = 1.5, 1.75, 2 and 2.5 (the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The 900 °C long-term aging follows the Lifshitz–Slyozov–Wagner theory (LSW theory), and the Co content does not have noticeable influence on the coarsening rate of γ′. The microstructure and creep behavior of the four (001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co (9.43 Co) shows the longest lifetime of about 350 h at 1050 °C/120 MPa, and all the samples show N-type rafting after creep tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Caron, T. Khan, Aerosp. Sci. Technol. 3, 513 (1999)

    Article  Google Scholar 

  2. Z.J. Zhou, D.Q. Yu, L. Wang, L.H. Lou, Acta Metall. Sin. (Engl. Lett.) 30, 185 (2017)

    Article  Google Scholar 

  3. H.T. Li, Y.C. Liang, W.L. Zhong, X.Z. Qin, J.T. Guo, L.Z. Zhou, W.L. Ren, Acta Metall. Sin. (Engl. Lett.) 30, 280 (2017)

    Article  Google Scholar 

  4. S.H. Liu, M.R. Wen, Z. Li, W.Q. Liu, P. Yan, C.Y. Wang, Mater. Des. 130, 157 (2017)

    Article  Google Scholar 

  5. W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, Z.Q. Hu, Mater. Sci. Eng. A 479, 148 (2008)

    Article  Google Scholar 

  6. S.G. Tian, X.J. Zhu, J. Wu, H.C. Yu, D.L. Shu, B.J. Qian, J. Mater. Sci. Technol. 32, 790 (2016)

    Article  Google Scholar 

  7. L. Qin, Y.L. Pei, S.S. Li, X.B. Zhao, S.K. Gong, H.B. Xu, Mater. Des. 130, 69 (2017)

    Article  Google Scholar 

  8. S. Walston, A. Cetel, R. Mackay, K.O. Hara, D. Duhl, R. Dreshfield, in Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.W. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 15

    Google Scholar 

  9. L. Erickson, in Superalloys, ed. by D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (TMS, Champion, 1996), p. 35

    Google Scholar 

  10. H. Murakami, T. Yamagata, H. Harada, M. Yamazaki, Mater. Sci. Eng. A 223, 54 (1997)

    Article  Google Scholar 

  11. E.C. Caldwell, F.J. Fela, G.E. Fuchs, in Superalloys, ed. by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, S. Walston (TMS, Pennsylvania, 2004), p. 818

    Google Scholar 

  12. Y. Mishima, S. Ochiai, T. Suzuki, Acta Metall. 33, 1161 (1985)

    Article  Google Scholar 

  13. R.C. Reed, The Superalloys Fundamentals and Applications (Cambridge University Press, New York, 2006), pp. 33–120

    Book  Google Scholar 

  14. L.J. Carroll, Q. Feng, J.F. Mansfield, T.M. Pollock, Mater. Sci. Eng. A 457, 292 (2007)

    Article  Google Scholar 

  15. J.R. Li, J.C. Xiong, D.Z. Tang, Advanced High Temperature Structural Materials and Technology (I) (National Defence Industry Press, Beijing, 2012), pp. 100–198. (in Chinese)

    Google Scholar 

  16. B. Wang, J. Zhang, T.W. Huang, W.C. Yang, H.J. Su, Z.R. Li, L. Liu, H.Z. Fu, J. Mater. Res. 32, 1328 (2016)

    Article  Google Scholar 

  17. B.B. Jiang, Q. Wang, C. Dong, Acta Phys. Sin. 66, 026102 (2017). (in Chinese)

    Google Scholar 

  18. H.L. Hong, Q. Wang, C. Dong, P.K. Liaw, Sci. Rep. 4, 7065 (2014)

    Article  Google Scholar 

  19. H.L. Hong, C. Dong, Q. Wang, Y. Zhang, Y.X. Geng, Acta Phys. Sin. 65, 36101 (2016). (in Chinese)

    Google Scholar 

  20. H.L. Hong, Q. Wang, C. Dong, Sci. China Mater. 28, 355 (2015)

    Article  Google Scholar 

  21. H.M. Li, Y.J. Zhao, X.N. Li, D.Y. Zhou, C. Dong, J. Phys. D Appl. Phys. 49, 035306 (2016)

    Article  Google Scholar 

  22. B.B. Jiang, Q. Wang, X.N. Li, C. Dong, F. Xu, H. He, L.X. Sun, Metall. Mater. Trans. A 48, 3912 (2017)

    Article  Google Scholar 

  23. Q. Wang, Q. Li, X.N. Li, R.Q. Zhang, X.X. Gao, C. Dong, P.K. Liao, Metall. Mater. Trans. A 46, 3924 (2015)

    Article  Google Scholar 

  24. Q. Wang, C. Dong, P.K. Liao, Metall. Mater. Trans. A 46, 3440 (2015)

    Article  Google Scholar 

  25. C. Pang, B.B. Jiang, Y. Shi, Q. Wang, C. Dong, J. Alloys Compd. 652, 63 (2015)

    Article  Google Scholar 

  26. C. Pang, Q. Wang, R.Q. Zhang, Q. Li, X. Dai, C. Dong, P.K. Liao, Mater. Sci. Eng. A 626, 369 (2015)

    Article  Google Scholar 

  27. S.N. Qian, C. Dong, Acta Phys. Sin. 66, 136103 (2017). (in Chinese)

    Google Scholar 

  28. Q. Wang, Q.F. Zha, E.X. Liu, C. Dong, X.J. Wang, C.X. Tan, C.J. Ji, Acta Metall. Sin. (in Chinese) 48, 1201 (2012).

    Article  Google Scholar 

  29. M.L. Huang, Y.C. Yang, Y. Chen, C. Dong, Mater. Sci. Eng. A 664, 221 (2016)

    Article  Google Scholar 

  30. Q. Wang, Y. Ma, B.B. Jiang, X.N. Li, Y. Shi, C. Dong, P.K. Liaw, Scr. Mater. 120, 85 (2016)

    Article  Google Scholar 

  31. Y. Ma, B.B. Jiang, C.L. Li, Q. Wang, C. Dong, P.K. Liao, F. Xu, L.X. Sun, Metals 7, 57 (2017)

    Article  Google Scholar 

  32. J.J. Yu, Q. Wang, X.N. Li, Y. Shi, C. Dong, C.J. Ji, X.M. Xu, Trans. Mater. Heat Treat. 34, 184 (2013). (in Chinese)

    Google Scholar 

  33. A. Takeuchi, A. Inoue, Mater. Trans. 46, 2817 (2005)

    Article  Google Scholar 

  34. Z.H. Yao, J.X. Dong, M.C. Zhang, H. Chen, Q.Y. Yu, Mater. Mech. Eng. 6, 67 (2015). (in Chinese)

    Google Scholar 

  35. M. Wang, B. Chen, X.C. Hao, Y.C. Ma, K. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 771 (2017)

    Article  Google Scholar 

  36. S. Tang, L.K. Ning, T.Z. Xin, Z. Zheng, J. Mater. Sci. Technol. 32, 172 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701401) and the National Natural Science Foundation of China (No. 11674045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Dong.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Q., Dong, HG. et al. High-Temperature Structural Stabilities of Ni-Based Single-Crystal Superalloys Ni–Co–Cr–Mo–W–Al–Ti–Ta with Varying Co Contents. Acta Metall. Sin. (Engl. Lett.) 31, 127–133 (2018). https://doi.org/10.1007/s40195-017-0678-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0678-0

Keywords

Navigation