Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 477–486 | Cite as

Energy Density Dependence of Bonding Characteristics of Selective Laser-Melted Nb–Si-Based Alloy on Titanium Substrate

  • Yue-Ling Guo
  • Li-Na Jia
  • Bin Kong
  • Yong-Lin Huang
  • Hu Zhang
Article

Abstract

Spherical Nb–20Si–24Ti–2Cr–2Al pre-alloyed powders were processed by selective laser melting (SLM) on Ti6Al4V substrates with different energy densities. A series of single tracks and single layers were produced using different processing parameters, including powder size, laser power, scanning speed and hatch distance. Results showed that the pre-alloyed powders ranging from 45 to 75 μm were more applicable to SLM with less balling tendency, in comparison with those between 75 and 180 μm. The increase in linear energy density (LED) resulted in the decrease in contact angle and the increase in the width of single track as well as its penetration depth into the substrate. Smaller hatch distance leaded to a larger remelted part of the former track and a higher volumetric laser energy density. With a thickness of 75.6 μm, an interfacial intermediate layer, enriched in Ti and depleted in Nb, Si, Cr and Al, was formed between the SLM part and the Ti6Al4V substrate. The mechanisms of the elimination of balling phenomenon by employing a higher LED and the interfacial bonding characteristics between Nb–Si-based alloys via SLM and the Ti6Al4V substrate were discussed.

Keywords

Nb–Si alloys Selective laser melting Additive manufacture Bonding character Microstructure 

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 51471013 and 51571004).

References

  1. [1]
    T.M. Pollock, Nat. Mater. 15, 809 (2016)CrossRefGoogle Scholar
  2. [2]
    W. Liu, H. Xiong, N. Li, S. Guo, R. Qin, Qin, Acta Metall. Sin. (Engl. Lett.) (2017).  https://doi.org/10.1007/s40195-017-0619-y. (in press) Google Scholar
  3. [3]
    Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, H.Q. Ye, Intermetallics 16, 807 (2008)CrossRefGoogle Scholar
  4. [4]
    B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J. Zhao, Metall. Mater. Trans. A 34, 2043 (2003)CrossRefGoogle Scholar
  5. [5]
    Y. Guo, L. Jia, B. Kong, H. Zhang, H. Zhang, Mater. Sci. Eng. A 701, 149 (2017)CrossRefGoogle Scholar
  6. [6]
    T. Fei, Y. Yu, C. Zhou, J. Sha, Mater. Des. 116, 92 (2017)CrossRefGoogle Scholar
  7. [7]
    S. Dadbakhsh, M. Speirs, J. Van Humbeeck, J. Kruth, MRS Bull. 41, 765 (2016)CrossRefGoogle Scholar
  8. [8]
    L.C. Zhang, H. Attar, Adv. Eng. Mater. 18, 463 (2016)CrossRefGoogle Scholar
  9. [9]
    H. Attar, M. Bönisch, M. Calin, L. Zhang, S. Scudino, J. Eckert, Acta Mater. 76, 13 (2014)CrossRefGoogle Scholar
  10. [10]
    D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, R. Poprawe, Scr. Mater. 96, 25 (2015)CrossRefGoogle Scholar
  11. [11]
    Y. Zhou, S.F. Wen, B. Song, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi, Mater. Des. 89, 1199 (2016)CrossRefGoogle Scholar
  12. [12]
    J. Sander, J. Hufenbach, L. Giebeler, H. Wendrock, U. Kühn, J. Eckert, Mater. Des. 89, 335 (2016)CrossRefGoogle Scholar
  13. [13]
    H. Attar, K.G. Prashanth, L. Zhang, M. Calin, I.V. Okulov, S. Scudino, C. Yang, J. Eckert, J. Mater. Sci. Technol. 31, 1001 (2015)CrossRefGoogle Scholar
  14. [14]
    I. Yadroitsev, I. Smurov, Phys. Proc. 5, 551 (2010)CrossRefGoogle Scholar
  15. [15]
    H. Gong, K. Rafi, H. Gu, G.D.J. Ram, T. Starr, B. Stucker, Mater. Des. 86, 545 (2015)CrossRefGoogle Scholar
  16. [16]
    Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater. 113, 56 (2016)CrossRefGoogle Scholar
  17. [17]
    Y.J. Liu, X.P. Li, L.C. Zhang, T.B. Sercombe, Mater. Sci. Eng. A 642, 268 (2015)CrossRefGoogle Scholar
  18. [18]
    X.P. Li, C.W. Kang, H. Huang, L.C. Zhang, T.B. Sercombe, Mater. Sci. Eng. A 606, 370 (2014)CrossRefGoogle Scholar
  19. [19]
    N.J. Harrison, I. Todd, K. Mumtaz, Acta Mater. 94, 59 (2015)CrossRefGoogle Scholar
  20. [20]
    D. Gu, Y. Shen, Mater. Des. 30, 2903 (2009)CrossRefGoogle Scholar
  21. [21]
    X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, J. Mater. Process. Technol. 222, 33 (2015)CrossRefGoogle Scholar
  22. [22]
    D. Wang, Y. Liu, Y. Yang, D. Xiao, R.I. Campbell, I. Gibson, Rapid Prototyping J. 22 (2016)Google Scholar
  23. [23]
    H. Schwab, F. Palm, U. Kühn, J. Eckert, Mater. Des. 105, 75 (2016)CrossRefGoogle Scholar
  24. [24]
    X.P. Li, M. Roberts, Y.J. Liu, C.W. Kang, H. Huang, T.B. Sercombe, Mater. Des. 65, 1 (2015)CrossRefGoogle Scholar
  25. [25]
    A. Pérez Del Pino, P. Serra, J.L. Morenza, Appl. Surf. Sci. 197–198, 887 (2002)CrossRefGoogle Scholar
  26. [26]
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012)CrossRefGoogle Scholar
  27. [27]
    D. Dai, D. Gu, Mater. Des. 55, 482 (2014)CrossRefGoogle Scholar
  28. [28]
    Y. Guo, L. Jia, S. Sun, B. Kong, J. Liu, H. Zhang, Mater. Des. 109, 37 (2016)CrossRefGoogle Scholar
  29. [29]
    N.K. Tolochko, S.E. Mozzharov, I.A. Yadroitsev, T. Laoui, L. Froyen, V.I. Titov, M.B. Ignatiev, Rapid Prototyp. J. 10, 78 (2004)CrossRefGoogle Scholar
  30. [30]
    R. Mead-Hunter, A.J. King, B.J. Mullins, Langmuir 28, 6731 (2012)CrossRefGoogle Scholar
  31. [31]
    I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Technol. 210, 1624 (2010)CrossRefGoogle Scholar
  32. [32]
    A. Simchi, Mater. Sci. Eng. A 428, 148 (2006)CrossRefGoogle Scholar
  33. [33]
    E.J.R. Parteli, T. Pöschel, Powder Technol. 288, 96 (2016)CrossRefGoogle Scholar
  34. [34]
    I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 253, 8064 (2007)CrossRefGoogle Scholar
  35. [35]
    A.V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 254, 975 (2007)CrossRefGoogle Scholar
  36. [36]
    D. Dai, D. Gu, Int. J. Mach. Tool Manuf. 100, 14 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yue-Ling Guo
    • 1
  • Li-Na Jia
    • 1
  • Bin Kong
    • 1
  • Yong-Lin Huang
    • 1
  • Hu Zhang
    • 1
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations