Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 216–224 | Cite as

Effect of Heat Treatment on Microstructure and Mechanical Properties of Quenching and Partitioning Steel

  • Shao-Heng Sun
  • Ai-Min Zhao
  • Ran Ding
  • Xiao-Gang Li
Article

Abstract

In order to investigate the effect of microstructural characterization on the mechanical properties and retained austenite stability, a different type of quenching and partitioning steel (I-Q&P) through intercritical annealing before the quenching and partitioning process was designed, which can realize lamellar intercritical microstructure compared to the conventional quenching and partitioning (Q&P) process. The morphology of ferrite and martensite/retained austenite is lamellar in the I-Q&P steel while it is equiaxed after being heat-treated by conventional Q&P process. The I-Q&P steel is proved to have better formability and mechanical properties than conventional Q&P steel, which is due to the higher-volume fraction of retained austenite in the I-Q&P steel and confirmed by electron backscattering diffraction patterns and X-ray diffraction. Furthermore, the stability of retained austenite in I-Q&P steel is also higher than that in conventional Q&P steel, which is investigated by tensile tests and differential scanning calorimetry.

Keywords

Quenching and partitioning steel Heat treatment Retained austenite Stability Activation energy 

References

  1. [1]
    J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003)CrossRefGoogle Scholar
  2. [2]
    J. Speer, D. Edmonds, F. Rizzo, D. Matlock, Curr. Opin. Solid State Mater. Sci. 8, 219 (2004)CrossRefGoogle Scholar
  3. [3]
    J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011)CrossRefGoogle Scholar
  4. [4]
    R. Ding, D. Tang, A. Zhao, R. Dong, J. Cheng, Mater. Manuf. Process. 29, 704 (2014)CrossRefGoogle Scholar
  5. [5]
    A. Mark, M. Westphal, D. Boyd, J. Mcdermid, D. Embury, Can. Metall. Q. 48, 237 (2009)CrossRefGoogle Scholar
  6. [6]
    D. De Knijf, R. Petrov, C. Föjer, L.A.I. Kestens, Mater. Sci. Eng. A 615, 107 (2014)CrossRefGoogle Scholar
  7. [7]
    N. Vandijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, S. Vanderzwaag, Acta Mater. 53, 5439 (2005)CrossRefGoogle Scholar
  8. [8]
    R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, N.H. van Dijk, Acta Mater. 60, 565 (2012)CrossRefGoogle Scholar
  9. [9]
    E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Acta Mater. 55, 6713 (2007)CrossRefGoogle Scholar
  10. [10]
    I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004)CrossRefGoogle Scholar
  11. [11]
    P.J. Jacques, F. Delannay, J. Ladrière, Metall. Mater. Trans. A 32, 2759 (2001)CrossRefGoogle Scholar
  12. [12]
    O. Muránsky, P. Šittner, J. Zrník, E.C. Oliver, Acta Mater. 56, 3367 (2008)CrossRefGoogle Scholar
  13. [13]
    S.O. Kruijver, L. Zhao, J. Sietsma, S.E. Offerman, N.H. Van Dijk, J. Phys. IV 104, 499 (2003)Google Scholar
  14. [14]
    S. Wen, L.I. Lin, B.C.D. Cooman, P. Wollants, C.X. Yang, J. Iron Steel Res. Int. 15, 61 (2008)CrossRefGoogle Scholar
  15. [15]
    P.V. Morra, A.J. Böttger, E.J. Mittemeijer, J. Therm. Anal. Calorim. 64, 905 (2001)CrossRefGoogle Scholar
  16. [16]
    R.M. Wu, L. Wang, X.J. Jin, Phys. Proc. 50, 8 (2013)CrossRefGoogle Scholar
  17. [17]
    H. Maruyama, J. Jpn. Soc. Heat Treat. 17, 198 (1977)Google Scholar
  18. [18]
    D.J. Dyson, B. Holmes, J. Iron Steel Inst. 208, 469 (1970)Google Scholar
  19. [19]
    M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 40, 46 (2009)CrossRefGoogle Scholar
  20. [20]
    M.J. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Mater. Charact. 59, 1758 (2008)CrossRefGoogle Scholar
  21. [21]
    R. Ding, D. Tang, A. Zhao, Scr. Mater. 88, 21 (2014)CrossRefGoogle Scholar
  22. [22]
    H.X. Yin, A.M. Zhao, Z.Z. Zhao, X. Li, S.J. Li, H.J. Hu, W.G. Xia, Int. J. Miner. Metall. Mater. 22, 262 (2015)CrossRefGoogle Scholar
  23. [23]
    R. Ding, D. Tang, A. Zhao, H. Guo, J. He, C. Zhi, Mater. Des. 87, 640 (2015)CrossRefGoogle Scholar
  24. [24]
    A.S. Podder, I. Lonardelli, A. Molinari, H.K.D.H. Bhadeshia, Proc. R. Soc. A 467, 3141 (2011)CrossRefGoogle Scholar
  25. [25]
    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, Scr. Mater. 68, 321 (2013)CrossRefGoogle Scholar
  26. [26]
    J. Zhang, H. Ding, R.D.K. Misra, C. Wang, Mater. Sci. Eng. A 611, 252 (2014)CrossRefGoogle Scholar
  27. [27]
    W.J. Dan, Z.Q. Lin, S.H. Li, W.G. Zhang, Mater. Sci. Eng. A 552, 1 (2012)CrossRefGoogle Scholar
  28. [28]
    H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater. 62, 197 (2014)CrossRefGoogle Scholar
  29. [29]
    Y.G. Deng, H.S. Di, J.C. Zhang, Acta Metall. Sin. (Engl. Lett.) 28, 1141 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shao-Heng Sun
    • 1
  • Ai-Min Zhao
    • 1
  • Ran Ding
    • 2
  • Xiao-Gang Li
    • 3
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.New Technology DepartmentBeijing Electric Vehicle CO., LTDBeijingChina

Personalised recommendations