Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 153–163 | Cite as

Electro-Optics and Band Gap Energies of Nanosilver-Coated TiO2 Nanotubes on Titanium Metal

  • Uğursoy Olgun
  • Mustafa Gülfen
  • Fatih Üstel
  • Hale Arslan
Article
  • 59 Downloads

Abstract

TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanotubes were examined by using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, cyclic voltammetry, and UV–Vis. The electrochemical band gap (E g CV ) of the nanosilver-coated TiO2 nanotubes prepared by the anodization was found as 1.54 eV. Using the UV–Vis measurements, the optical band gap energy (E g op. ) was calculated as 1.51 eV for the Ag/TiO2 nanotubes obtained by electroless dip coating. The electrical conductivity of the TiO2 nanotubes also increased from 3.0 × 10−4 to 34.7 S/cm after nano Ag deposition by the anodization method. These Ag/TiO2 nanotubes with low band gap and high electrical conductivity are desirable for the applications in electronics, Li-ion batteries, and solar cells.

Keywords

Electrochemical anodization TiO2 nanotubes Nano Ag deposition Band gap energy Electrical conductivity 

Notes

Acknowledgements

The authors thank the Scientific Research Commission of Sakarya University. This work was supported by Sakarya University with Project No. BAPK-2012-50-01-018.

References

  1. [1]
    H. An, B. Zhu, J. Li, J. Zhou, S. Wang, S. Zhang, S. Wu, W. Huang, J. Phys. Chem. C 112, 18772 (2008)CrossRefGoogle Scholar
  2. [2]
    I. Paramasivam, J.M. Macak, A. Ghicov, P. Schmuki, Chem. Phys. Lett. 445(4), 233 (2007)CrossRefGoogle Scholar
  3. [3]
    V.K. Mahajan, M. Misra, K.S. Raja, S.K. Mohapatra, J. Phys. D-Appl. Phys. 41, 125307 (2008)CrossRefGoogle Scholar
  4. [4]
    D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011)CrossRefGoogle Scholar
  5. [5]
    T. Dikici, S. Yildirim, M. Yurddaskal, M. Erol, R. Yigit, M. Toparli, E. Celik, Surf. Coat. Technol. 263, 1 (2015)CrossRefGoogle Scholar
  6. [6]
    P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRefGoogle Scholar
  7. [7]
    Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, J. Phys. Chem. C 115, 9498 (2011)CrossRefGoogle Scholar
  8. [8]
    J. Yu, G. Dai, B. Cheng, J. Phys. Chem. C 114, 19378 (2010)CrossRefGoogle Scholar
  9. [9]
    C.A. Grimes, G.K. Mor, TiO 2 Nanotube Arrays: Synthesis, Properties and Applications (Springer, New York, 2009)CrossRefGoogle Scholar
  10. [10]
    J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005)CrossRefGoogle Scholar
  11. [11]
    J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Smooth, Angew. Chem. Int. Ed. 44, 7463 (2005)CrossRefGoogle Scholar
  12. [12]
    I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 71 (2008)CrossRefGoogle Scholar
  13. [13]
    X. Zhang, R. Hang, H. Wu, X. Huang, Y. Ma, N. Lin, X. Yao, L. Tian, B. Tang, Surf. Coat. Technol. 235, 748 (2013)CrossRefGoogle Scholar
  14. [14]
    U. Olgun, A.C.S. Appl, Mater. Interfaces 2, 28 (2009)CrossRefGoogle Scholar
  15. [15]
    U. Olgun, K. Tunc, V. Özaslan, Polym. Adv. Technol. 222, 232 (2011)CrossRefGoogle Scholar
  16. [16]
    D. Fang, K. Huang, S. Liu, Z. Li, J. Alloys Compd. 464, L5 (2008)CrossRefGoogle Scholar
  17. [17]
    H. Li, X. Duan, G. Liu, X. Liu, J. Mater. Sci. 43, 1669 (2008)CrossRefGoogle Scholar
  18. [18]
    X. He, Y. Cai, H. Zhang, C. Liang, J. Mater. Chem. 21, 475 (2010)CrossRefGoogle Scholar
  19. [19]
    A. Roguska, M. Pisarek, M. Andrzejczuk, M. Lewandowska, K.J. Kurzydlowski, M.J. Janik-Czachor, Biomed. Mater. Res. A 100, 1954 (2012)CrossRefGoogle Scholar
  20. [20]
    Y. Ling, Y. Zhuo, L. Huang, D. Mao, Appl. Surf. Sci. 388, 169 (2016)CrossRefGoogle Scholar
  21. [21]
    S.T. Nishanthi, S. Iyyapushpam, B. Sundarakannan, E. Subramanian, D.P. Padiyan, J. Power Sources 274, 885 (2015)CrossRefGoogle Scholar
  22. [22]
    Y.C. Yao, X.R. Dai, X.Y. Hu, S.Z. Huang, Z. Jin, Appl. Surf. Sci. 387, 469 (2016)CrossRefGoogle Scholar
  23. [23]
    B. Barrocas, C.D. Nunes, M.L. Carvalho, O.C. Monteiro, Appl. Surf. Sci. 385, 18 (2016)CrossRefGoogle Scholar
  24. [24]
    P.V. Viet, B.T. Phan, C.M. Thi, L.V. Hieu, J. Nanosci. Nanotechnol. 17, 1497 (2017)CrossRefGoogle Scholar
  25. [25]
    X. Wei, P.S. Nbelayim, G. Kawamura, H. Muto, A. Matsuda, Nanotechnology 28, 135207 (2017)CrossRefGoogle Scholar
  26. [26]
    L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, C. Lin, J. Hazard. Mater. 171, 1045 (2009)CrossRefGoogle Scholar
  27. [27]
    A. Jostsons, A.S. Malin, Acta Crystallogr. B-Struct. 24, 211 (1968)CrossRefGoogle Scholar
  28. [28]
    K. Kadoi, N. Babcsan, H. Nakae, Mater. Trans. 50, 727 (2009)CrossRefGoogle Scholar
  29. [29]
    B. Ercan, K.M. Kummer, K.M. Tarquinio, T.J. Webster, Acta Biomater. 7, 3003 (2011)CrossRefGoogle Scholar
  30. [30]
    K. Gupta, R.P. Singh, A. Pandey, A. Pandey, Beilstein J. Nanotechnol. 4, 345 (2013)CrossRefGoogle Scholar
  31. [31]
    M. Mojiri-Foroushani, H. Dehghani, N. Salehi-Vanani, Electrochim. Acta 92, 315 (2013)CrossRefGoogle Scholar
  32. [32]
    B.W. D’Andrade, S. Datta, S.R. Forrest, P. Djurovich, E. Polikarpov, M.E. Thompson, Org. Electron. 6, 11 (2005)CrossRefGoogle Scholar
  33. [33]
    U. Olgun, M. Gülfen, Dyes Pigments 99, 1004 (2013)CrossRefGoogle Scholar
  34. [34]
    U. Olgun, M. Gülfen, React. Funct. Polym. 77, 23 (2014)CrossRefGoogle Scholar
  35. [35]
    U. Olgun, M. Gülfen, RSC Adv. 4, 25165 (2014)CrossRefGoogle Scholar
  36. [36]
    U. Olgun, M. Gülfen, RSC Adv. 5, 18710 (2015)CrossRefGoogle Scholar
  37. [37]
    S. Kurian, H. Seo, H. Jeon, J. Phys. Chem. C 117, 16811 (2013)CrossRefGoogle Scholar
  38. [38]
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239 (2003)CrossRefGoogle Scholar
  39. [39]
    P. Barone, F. Stranges, M. Barberio, D. Renzelli, A. Bonanno, F. Xu, J. Chem. 2014, 1 (2014)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Uğursoy Olgun
    • 1
  • Mustafa Gülfen
    • 1
  • Fatih Üstel
    • 2
  • Hale Arslan
    • 2
  1. 1.Department of Chemistry, Faculty of Arts and SciencesSakarya UniversitySakaryaTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of EngineeringSakarya UniversitySakaryaTurkey

Personalised recommendations