Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 5, pp 496–502 | Cite as

Effect of Heat Treatment Time on Dy–Cu Alloy Diffusion Process in Dy-Containing Commercial Nd–Fe–B Sintered Magnets

Article
  • 46 Downloads

Abstract

In this paper, the grain boundary diffusion process (GBDP) using a Dy70Cu30 (at.%) alloy as the diffusion source was performed in a commercial sintered Nd–Fe–B magnet, and the effect of heat treatment time on the microstructure and magnetic properties of the magnet was investigated in detail. For the processed magnets heat-treated at 860 °C, as heat treatment time increased, the coercivity and the depth of (Nd,Dy)2Fe14B core–shell structure increased first and then decreased. However, when the heat treatment time was more than 2 h, the diffusion path of Dy from the Dy-rich shell phase into the Nd2Fe14B grains was revealed, and a nearly homogeneous (Nd,Dy)2Fe14B phase was formed, which brought on the decrease in both the depth of visible core–shell structure and the coercivity of Nd–Fe–B magnet.

Keywords

Sintered Nd–Fe–B magnets Grain boundary diffusion Heat treatment time Coercivity Micromagnetic simulation 

Notes

Acknowledgements

This work was supported by the Guangdong Natural Science Foundation (2016A030313502), the Fundamental Research Funds for the Central Universities, SCUT (2015ZZ066), the Guangdong Science and Technology Planning Project (2013B090500115), and the Open Research Fund of Guangdong Key Laboratory (B7140010). We also thank Dr. Eric J. Payton (AFRL/RXCM) for proofreading this manuscript.

References

  1. [1]
    J.J. Croat, J.F. Herbst, R.W. Lee, F.E. Pinkerton, J. Appl. Phys. 55, 2078 (1984)CrossRefGoogle Scholar
  2. [2]
    M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, J. Appl. Phys. 55, 2083 (1984)CrossRefGoogle Scholar
  3. [3]
    H. Sepehri-Amin, T. Ohkubo, K. Hono, J. Appl. Phys. 107, 09A745 (2010)CrossRefGoogle Scholar
  4. [4]
    H. Sepehri-Amin, T. Ohkubo, K. Hono, Acta Mater. 61, 1982 (2013)CrossRefGoogle Scholar
  5. [5]
    Z. Samardžija, P. McGuiness, M. Soderžnik, S. Kobe, M. Sagawa, Mater. Charact. 67, 27 (2012)CrossRefGoogle Scholar
  6. [6]
    K. Hirota, T. Hirota, M. Minowa, J. Honshima, J. Alloys Compd. 42, 2909 (2006)Google Scholar
  7. [7]
    F. Xu, J. Wang, X. Dong, L. Zhang, J.J. Wu, J. Alloys Compd. 509, 7909 (2011)CrossRefGoogle Scholar
  8. [8]
    M. Soderžnik, M. Korent, K. Žagar Soderžnik, M. Katter, K. Üstüner, S. Kobe, Acta Mater. 115, 278 (2016)CrossRefGoogle Scholar
  9. [9]
    K.H. Bae, S.R. Lee, H.J. Kim, M.W. Lee, T.S. Jang, J. Appl. Phys. 118, 203902 (2015)CrossRefGoogle Scholar
  10. [10]
    T. Ma, X. Wang, X. Liu, C. Wu, M. Yan, J. Phys. D Appl. Phys. 48, 215001 (2015)CrossRefGoogle Scholar
  11. [11]
    S. Lee, J. Kwon, H.R. Cha, K.M. Kim, H.W. Kwon, J. Lee, D. Lee, Met. Mater. Int. 22, 340 (2016)CrossRefGoogle Scholar
  12. [12]
    M. Tang, X. Bao, K. Lu, L. Sun, J. Li, X. Gao, Scr. Mater. 117, 60 (2016)CrossRefGoogle Scholar
  13. [13]
    H. Sepehri-Amin, J. Liu, T. Ohkubo, K. Hioki, A. Hattori, K. Hono, Scr. Mater. 69, 647 (2013)CrossRefGoogle Scholar
  14. [14]
    H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono, Acta Mater. 61, 6622 (2013)CrossRefGoogle Scholar
  15. [15]
    X. Tang, R.J. Chen, W.Z. Yin, C.X. Jin, D. Lee, A. Yan, Appl. Phys. Lett. 107, 202403 (2015)CrossRefGoogle Scholar
  16. [16]
    N. Watanabe, M. Itakura, M. Nishida, J. Alloys Compd. 557, 1 (2013)CrossRefGoogle Scholar
  17. [17]
    Z. Wang, J. Ju, J. Wang, W. Yin, R. Chen, M. Li, C. Jin, X. Tang, D. Lee, A. Yan, Sci. Rep. 6, 38335 (2016)CrossRefGoogle Scholar
  18. [18]
    S. Sawatzki, C. Kübel, S. Ener, O. Gutfleisch, Acta Mater. 115, 354 (2016)CrossRefGoogle Scholar
  19. [19]
    M.J. Donahue, D.G. Porter, in OOMMF user’s guide, version 1.0, Nat. Inst. Standards and Technology, Gaithersburg, MD, Tech. Rep. NISTIR 6376. USA, 1999Google Scholar
  20. [20]
    M. Sagawa, S. Fujimura, H. Yamamoto, Y. Matsuura, S. Hirosawa, J. Appl. Phys. 57, 4094 (1985)CrossRefGoogle Scholar
  21. [21]
    S. Hirosawa, Y. Matsuura, H. Yamamoto, S. Fujimura, M. Sagawa, H. Yamauchi, J. Appl. Phys. 59, 873 (1986)CrossRefGoogle Scholar
  22. [22]
    N. Oono, M. Sagawa, R. Kasada, H. Matsui, A. Kimura, J. Magn. Magn. Mater. 323, 297 (2011)CrossRefGoogle Scholar
  23. [23]
    K. Löewe, C. Brombacher, M. Katter, O. Gutfleisch, Acta Mater. 83, 248 (2015)CrossRefGoogle Scholar
  24. [24]
    L.Q. Yu, J. Zhang, S.Q. Hu, Z.D. Han, M. Yan, J. Magn. Magn. Mater. 320, 1427 (2008)CrossRefGoogle Scholar
  25. [25]
    M. Yan, L.Q. Yu, W. Luo, W. Wang, W.Y. Zhang, Y.H. Wen, J. Magn. Magn. Mater. 301, 1 (2006)CrossRefGoogle Scholar
  26. [26]
    L. Liu, H. Sepehri-Amin, T. Ohkubo, M. Yano, A. Kato, T. Shoji, K. Hono, J. Alloys Compd. 666, 432 (2016)CrossRefGoogle Scholar
  27. [27]
    Y.H. Liu, S. Guo, R.J. Chen, D. Lee, A. Yan, IEEE Trans. Magn. 47, 3270 (2011)CrossRefGoogle Scholar
  28. [28]
    K. Skotnicová, G.S. Burkhanov, Y. Koshkidko, D. Růžička, T. Čegan, J. Ćwik, N.B. Kolchugina, A.A. Lukin, O. Životský, K. Hrabovská, Metalurgija 55, 621 (2016)Google Scholar
  29. [29]
    W.B. Cui, Y.Q. Fu, T. Liu, G.J. Li, Q. Wang, J. Alloys Compd. 686, 101 (2016)CrossRefGoogle Scholar
  30. [30]
    K. Loewe, D. Benke, C. Kübel, T. Lienig, K.P. Skokov, O. Gutfleisch, Acta Mater. 124, 421 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations