Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 143–147 | Cite as

Preparation and Magnetic Properties of Anisotropic SmCo5/Co Composite Particles

  • Lin Lv
  • Feng-Qing Wang
  • Qiang Zheng
  • Juan Du
  • Xian-Lin Dong
  • Ping Cui
  • J. Ping Liu
Article

Abstract

Anisotropic SmCo5/Co nanocomposite powders have been prepared by electroless Co deposition on commercial SmCo5 powders with hydrazine as reducer. The Co particles are mainly in the range of 8–27 nm and form dense/continuous soft magnetic coatings on the surface of SmCo5 powders. Exchange coupling happened between the coated Co soft magnetic particles and the SmCo5 hard phase. As a result, SmCo5/Co nanocomposite powders with remanence of 73.58 emu/g and energy product of 13.74 MGOe were obtained in the optimum condition, as compared with those of 70.52 emu/g and 13.40 MGOe for uncoated SmCo5 powders. The effects of Co adding amount on Co particle size, coating morphology, and magnetic properties of SmCo5/Co products were investigated.

Keywords

Nanocomposite Permanent magnet Coating Nanosize Exchange coupling 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 51422106; the National Basic Research Program of China under Grant No. 2014CB643702; the Ningbo Natural Science Foundation of China under Grant No. 2016A610249; the Scientific and Technological Project of Zhejiang Province under Grant No. 2013TD08; the Ningbo City Scientific and Technological Project under Grant No. 2012B81001; and the China Postdoctoral Science Foundation under Grant No. 2016M601989 for financial support.

References

  1. [1]
    N. Poudyal, K. Gandha, K. Elkins, J.P. Liu, Mater. Sci. 2, 294 (2015)Google Scholar
  2. [2]
    N. Poudyal, W. Xia, M. Yue, J.P. Liu, J. Appl. Phys. 115, 17A715 (2014)CrossRefGoogle Scholar
  3. [3]
    C. Yang, L.H. Jia, S.G. Wang, C. Gao, D.W. Shi, Y.L. Hou, S. Gao, Sci. Rep. 3, 3542 (2013)Google Scholar
  4. [4]
    M. Ito, K. Majima, T. Umemoto, S. Katsuyama, H. Nagai, J. Alloys Compd. 329, 272 (2001)CrossRefGoogle Scholar
  5. [5]
    S.K. Chen, J.L. Tsai, T.S. Chin, J. Appl. Phys. 79, 5964 (1996)Google Scholar
  6. [6]
    R. Skomski, J.M.D. Coey, Phys. Rev. B 48, 15812 (1993)CrossRefGoogle Scholar
  7. [7]
    F.C. Hou, Y. Cheng, L. Lou, H.L. Li, D.F. Guo, W. Li, X.Y. Zhang, Mater. Lett. 108, 186 (2013)Google Scholar
  8. [8]
    Y.G. Liu, L. Xu, Q.F. Wang, W. Li, X.Y. Zhang, Appl. Phys. Lett. 94, 172502 (2009)Google Scholar
  9. [9]
    M. Marinescu, J.F. Liu, M.J. Bonder, G.C. Hadjipanayis, J. Appl. Phys. 103, 07E120 (2008)Google Scholar
  10. [10]
    H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 393 (2002)CrossRefGoogle Scholar
  11. [11]
    C.B. Rong, Y. Zhang, N. Poudyal, I. Szlufarska, R.J. Hebert, M.J. Kramer, J. Magn. Magn. Mater. 46, 6065 (2011)Google Scholar
  12. [12]
    W. Gong, G.C. Hadjipanayis, R.F. Krause, J. Appl. Phys. 75, 6649 (1994)CrossRefGoogle Scholar
  13. [13]
    T. Kobayashi, M. Yamasaki, M. Hamano, J. Appl. Phys. 87, 6579 (2000)CrossRefGoogle Scholar
  14. [14]
    D. Goll, M. Seeger, H. Kronmüller, J. Magn. Magn. Mater. 185, 49 (1998)CrossRefGoogle Scholar
  15. [15]
    J.P. Liu, Y. Liu, R. Skomski, D.J. Sellmyer, J. Appl. Phys. 85, 4812 (1999)Google Scholar
  16. [16]
    F.Q. Wang, X.J. Hu, X. H. Li, G.W. Huang, Y.M. Zhang, X.Y. Zhang, J. Alloys Compd. 589, 283 (2014)Google Scholar
  17. [17]
    X.L. Wang, H.L. He, F.Q. Wang, Y. Chen, L. Xu, X.H. Li, X.Y. Zhang, J. Magn. Magn. Mater. 324, 889 (2012)Google Scholar
  18. [18]
    N. Poudyal, K. Elkins, K. Gandha, J.P. Liu, IEEE Trans. Magn. 51, 2104704 (2015)CrossRefGoogle Scholar
  19. [19]
    F.Q. Wang, X.J. Hu, G.W. Huang, F.C. Hou, X.Y. Zhang, J. Alloys Compd. 626, 212 (2015)Google Scholar
  20. [20]
    Z.H. Ma, T.L. Zhang, C.B. Jiang, RSC Adv. 5, 89128 (2015)Google Scholar
  21. [21]
    J.M.D. Coey, J. Magn. Magn. Mater. 140, 1041 (1995)CrossRefGoogle Scholar
  22. [22]
    C.B. Rong, N. Poudyal, X.B. Liu, Y. Zhang, M.J. Kramer, J.P. Liu, Appl. Phys. Lett. 101, 152401 (2012)Google Scholar
  23. [23]
    M. Yue, P.L. Niu, Y.L. Li, D.T. Zhang, W.Q. Liu, J. Appl. Phys. 103, 07E101 (2008)CrossRefGoogle Scholar
  24. [24]
    S.Y. Chu, S.A. Majetich, M.Q. Huang, R.T. Fingers, J. Appl. Phys. 93, 8146 (2003)CrossRefGoogle Scholar
  25. [25]
    J.F. Hu, Z.X. Wang, J. Phys.: Condens. Matter 7, 8655 (1995)Google Scholar
  26. [26]
    N. Kaushik, P. Sharma, S. Nagar, K.V. Rao, H. Kimura, A. Makino, Mater. Sci. Eng., B 171, 62 (2010)CrossRefGoogle Scholar
  27. [27]
    Q.F. Xiao, T. Zhao, Z.D. Zhang, E. Brück, K.H.J. Buschow, F.R. de Boer, J. Magn. Magn. Mater. 223, 215 (2001)Google Scholar
  28. [28]
    V. Pop, S. Gutoiu, E. Dorolti, O. Isnard, I. Chicinaş, J. Alloys Compd. 509, 9964–9969 (2011)CrossRefGoogle Scholar
  29. [29]
    V. Pop, E. Dorolti, C. Vaju, E. Gautron, O. Isnard, J.M.L. Breton, Rom. J. Phys. 55, 127 (2010)Google Scholar
  30. [30]
    N. Lupu, M. Grigoras, M. Lostun, H. Chiriac, J. Appl. Phys. 105, 07A738 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lin Lv
    • 1
    • 4
    • 5
    • 6
  • Feng-Qing Wang
    • 1
  • Qiang Zheng
    • 2
  • Juan Du
    • 1
    • 4
  • Xian-Lin Dong
    • 4
    • 5
  • Ping Cui
    • 1
    • 4
  • J. Ping Liu
    • 3
  1. 1.CAS Key Laboratory of Magnetic Materials and DevicesNingbo Institute of Material Technology and Engineering, Chinese Academy of SciencesNingboChina
  2. 2.School of Materials and Chemical EngineeringNingbo University of TechnologyNingboChina
  3. 3.Department of PhysicsUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Shanghai Institute of Ceramics, CASShanghaiChina
  6. 6.School of Physical Science and TechnologyShanghai Tech UniversityShanghaiChina

Personalised recommendations