Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 134–142 | Cite as

Origin of Insignificant Strengthening Effect of CNTs in T6-Treated CNT/6061Al Composites



Carbon nanotube (CNT)-reinforced 6061Al (CNT/6061Al) composites were fabricated via powder metallurgy combined with friction stir processing (FSP). CNTs were dispersed after FSP and accelerated the precipitation process of the CNT/6061Al composites. However, the strengthening effect of CNTs on the T6-treated materials was insignificant, while the composites under the FSP and solution treatment conditions exhibited increased strength compared to the matrix. Precipitate-free zones (PFZs) were detected around CNTs in the T6-treated CNT/6061Al composites, and a model was proposed to describe the effect of PFZs on strength. The calculations indicated that the strength of PFZs was similar to that of the T6-treated 6061Al. As a result, the strengthening effect of CNTs on the T6-treated CNT/6061Al composites was insignificant.


Metal matrix composites Carbon nanotubes Precipitate-free zones 



The authors gratefully acknowledge the support of National Key Research & Development Plan under Grant No.2017YFB0703100 and Key Research Program of Frontier Sciences, CAS, the CAS/SAFEA International Partnership Program for Creative Research Teams and the National Natural Science Foundation of China under Grant No. 51501189.


  1. [1]
    S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41–64 (2010)CrossRefGoogle Scholar
  2. [2]
    A.M.K. Esawi, M.M. Farag, Mater. Des. 28(9), 2394–2401 (2007)CrossRefGoogle Scholar
  3. [3]
    E.T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61(13), 1899–1912 (2001)CrossRefGoogle Scholar
  4. [4]
    P. Ajayan, O. Zhou, Appl. Carbon Nanotubes. 80, 391–425 (2001)Google Scholar
  5. [5]
    S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55(1), 41–64 (2013)CrossRefGoogle Scholar
  6. [6]
    E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Compos. Sci. Technol. 70(16), 2228–2236 (2010)CrossRefGoogle Scholar
  7. [7]
    W.A. Curtin, B.W. Sheldon, Mater. Today 7(11), 44–49 (2004)CrossRefGoogle Scholar
  8. [8]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 50(5), 1843–1852 (2012)CrossRefGoogle Scholar
  9. [9]
    R. Perez-Bustamante, F. Perez-Bustamante, I. Estrada-Guel, L. Licea-Jimenez, M. Miki-Yoshida, R. Martinez-Sanchez, Mater. Charact. 75, 13–19 (2013)CrossRefGoogle Scholar
  10. [10]
    C. Biao, L. Shufeng, H. Imai, J. Lei, J. Umeda, M. Takahashi, K. Kondoh, Mater. Des. 72, 1–8 (2015)CrossRefGoogle Scholar
  11. [11]
    L. Jiang, Z.Q. Li, G.L. Fan, L.L. Cao, D. Zhang, Carbon 50(5), 1993–1998 (2012)CrossRefGoogle Scholar
  12. [12]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, J. Mater. Sci. Technol. 30(7), 649–655 (2014)CrossRefGoogle Scholar
  13. [13]
    D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, S.H. Hong, Carbon 50(7), 2417–2423 (2012)CrossRefGoogle Scholar
  14. [14]
    S. Simoes, F. Viana, M.A.L. Reis, M.F. Vieira, Compos. Struct. 108, 992–1000 (2014)CrossRefGoogle Scholar
  15. [15]
    C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Mater. Sci. Eng. A 444(1–2), 138–145 (2007)CrossRefGoogle Scholar
  16. [16]
    J. Lipecka, M. Andrzejczuk, M. Lewandowska, J. Janczak-Rusch, K.J. Kurzydłowski, Compos. Sci. Technol. 71(16), 1881–1885 (2011)CrossRefGoogle Scholar
  17. [17]
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Compos. A 42(3), 234–243 (2011)CrossRefGoogle Scholar
  18. [18]
    H.J. Choi, J.H. Shin, D.H. Bae, Compos. Sci. Technol. 71(15), 1699–1705 (2011)CrossRefGoogle Scholar
  19. [19]
    J. Lin, L. Zhiqiang, F. Genlian, C. Linlin, Z. Di, Scripta Mater. 66(6), 331–334 (2012)CrossRefGoogle Scholar
  20. [20]
    L. Jiang, G. Fan, Z. Li, X. Kai, D. Zhang, Z. Chen, S. Humphries, G. Heness, W.Y. Yeung, Carbon 49(6), 1965–1971 (2011)CrossRefGoogle Scholar
  21. [21]
    D.H. Nam, Y.K. Kim, S.I. Cha, S.H. Hong, Carbon 50(13), 4809–4814 (2012)CrossRefGoogle Scholar
  22. [22]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Acta Metall. Sin. 27(5), 901–908 (2014)CrossRefGoogle Scholar
  23. [23]
    D.K. Lim, T. Shibayanagi, A.P. Gerlich, Mater. Sci. Eng. A 507(1–2), 194–199 (2009)CrossRefGoogle Scholar
  24. [24]
    Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, Mater. Sci. Eng. A 419(1–2), 344–348 (2006)CrossRefGoogle Scholar
  25. [25]
    L.B. Johannes et al., Nanotechnology 17(12), 3081 (2006)CrossRefGoogle Scholar
  26. [26]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 62, 35–42 (2013)CrossRefGoogle Scholar
  27. [27]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Carbon 69, 264–274 (2014)CrossRefGoogle Scholar
  28. [28]
    Z.Y. Liu, B.L. Xiao, W.G. Wang, Z.Y. Ma, Compos. Sci. Technol. 72(15), 1826–1833 (2012)CrossRefGoogle Scholar
  29. [29]
    K. Kondoh, H. Fukuda, J. Umeda, H. Imai, B. Fugetsu, Carbon 72, 15–21 (2014)CrossRefGoogle Scholar
  30. [30]
    C.H. Liu, X.L. Li, S.H. Wang, J.H. Chen, Q. Teng, J. Chen, Y. Gu, Mater. Des. 54, 144–148 (2014)CrossRefGoogle Scholar
  31. [31]
    D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, T. Epicier, Mater. Sci. Eng. A 528(6), 2718–2724 (2011)CrossRefGoogle Scholar
  32. [32]
    H. Fukuda, K. Kondoh, J. Umeda, B. Fugetsu, Mater. Lett. 65(11), 1723–1725 (2011)CrossRefGoogle Scholar
  33. [33]
    M. Raghavan, Metall. Trans. A 11(6), 993–999 (1980)CrossRefGoogle Scholar
  34. [34]
    S.K. Hong, C.W. Won, D.H. Shin, K.K. Jee, S.I. Hong, Scripta Mater. 36(8), 883–889 (1997)CrossRefGoogle Scholar
  35. [35]
    M.J. Starink, Mater. Sci. Eng. A 390(1–2), 260–264 (2005)CrossRefGoogle Scholar
  36. [36]
    H. Toda, T. Kobayashi, M. Niinomi, J. Jpn. Inst. Met. 58(4), 468–475 (1994)CrossRefGoogle Scholar
  37. [37]
    M.J. Starink, P.J. Gregson, Mater. Sci. Eng. A 211(1–2), 54–65 (1996)CrossRefGoogle Scholar
  38. [38]
    G.E. Kiourtsidis, S.M. Skolianos, Corrosion 56(6), 646–653 (2000)CrossRefGoogle Scholar
  39. [39]
    R. Nagarajan, I. Dutta, Metall. Mater. Trans. A 32(2), 433–436 (2001)CrossRefGoogle Scholar
  40. [40]
    T. Kobayashi, H. Toda, Mater. Sci. Forum 217–222, 1127–1132 (1996)CrossRefGoogle Scholar
  41. [41]
    T. Sie Chin, Mater. Sci. Eng. R 74(10), 281–350 (2013)CrossRefGoogle Scholar
  42. [42]
    R. Casati, M. Vedani, Metals 4(1), 65–83 (2014)CrossRefGoogle Scholar
  43. [43]
    M.J. Starink, S. Syngellakis, Mater. Sci. Eng. A 270(2), 270–277 (1999)CrossRefGoogle Scholar
  44. [44]
    M.J. Starink, P. Wang, I. Sinclair, P.J. Gregson, Acta Mater. 47(14), 3855–3868 (1999)CrossRefGoogle Scholar
  45. [45]
    M.J. Starink, P. Wang, I. Sinclair, P.J. Gregson, Acta Mater. 47(14), 3841–3853 (1999)CrossRefGoogle Scholar
  46. [46]
    A.B. Pandey, B.S. Majumdar, D.B. Miracle, Metall. Mater. Trans. A 31(3A), 921–936 (2000)CrossRefGoogle Scholar
  47. [47]
    Y.Z. Li, Q.Z. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Chem. Phys. 154, 107–117 (2015)CrossRefGoogle Scholar
  48. [48]
    Y.Z. Li, Q.Z. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 620, 445–453 (2015)CrossRefGoogle Scholar
  49. [49]
    Y.Q. Xu, L.H. Zhan, S.J. Li, X.T. Wu, Rare Met. Mater. Eng. 46(2), 355–362 (2017)CrossRefGoogle Scholar
  50. [50]
    J. Song, R. Field, D. Konitzer, M. Kaufman, Metall. Mater. Trans. A 48A(5), 2425–2434 (2017)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of EducationGuilin University of TechnologyGuilinChina

Personalised recommendations