Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 164–170 | Cite as

Synthesis of Co3O4 Nanoparticles Wrapped Within Full Carbon Matrix as an Anode Material for Lithium Ion Batteries

  • Subhalaxmi Mohapatra
  • Shantikumar V. Nair
  • Alok Kumar Rai


A facile polyol-assisted pyro-synthesis method was used to synthesize Co3O4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy showed that the Co3O4 nanoparticles (~20 ± 5 nm) are tightly enwrapped within the carbon matrix. CHN analysis determined the carbon content was only 0.11% in the final annealed sample. The Co3O4@carbon exhibited high capacities and excellent cycling performance as an anode at various current rates (such as 914.4 and 515.5 mAh g−1 at 0.25 and 1.0 C, respectively, after 50 cycles; 318.2 mAh g−1 at a high current rate of 5.0 C after 25 cycles). This superior electrochemical performance of the electrode can be attributed to the various aspects, such as, (1) the existence of carbon matrix, which acts as a flexible buffer to accommodate the volume changes during Li+ ion insertion/deinsertion and facilitates the fast Li+ and electron transfer and (2) the anchoring of Co3O4 nanoparticles within the carbon matrix prevents particles agglomeration.


Co3O4 Carbon matrix Pyro-synthesis Anode Lithium ion battery 



Alok Kumar Rai is grateful to Department of Science and Technology (DST), New Delhi, Government of India, for the award of Ramanujan Fellowship (SB/S2/RJN-044/2015). This work was also supported by the Science and Engineering Research Board (SERB), Government of India (Grant No. YSS/2015/000489).


  1. [1]
    A.K. Rai, J. Gim, L.T. Anh, J. Kim, Electrochim. Acta 100, 63 (2013)CrossRefGoogle Scholar
  2. [2]
    H. Long, M. Zhang, Q. Wang, L. Xing, S. Wang, X. Xue, J. Alloys Compd. 701, 200 (2017)CrossRefGoogle Scholar
  3. [3]
    Q. Wang, B. Yu, X. Li, L. Xing, X. Xue, J. Mater. Chem. A 4, 425 (2016)CrossRefGoogle Scholar
  4. [4]
    L. Xing, Z. Chen, X. Xue, Solid State Sci. 32, 88 (2014)CrossRefGoogle Scholar
  5. [5]
    L. Xing, Y. Zhao, J. Zhao, Y. Nie, P. Deng, Q. Wang, X. Xue, J. Alloys Compd. 586, 28 (2014)CrossRefGoogle Scholar
  6. [6]
    Q. Wang, C. Zhang, X. Xia, L. Xing, X. Xue, Mater. Lett. 112, 162 (2013)CrossRefGoogle Scholar
  7. [7]
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  8. [8]
    D. Qiu, G. Bu, B. Zhao, Z. Lin, L. Pu, L. Pan, Y. Shi, Mater. Lett. 119, 12 (2014)CrossRefGoogle Scholar
  9. [9]
    X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang, Q. Jiang, Sci. Rep. 5, 16629 (2015)CrossRefGoogle Scholar
  10. [10]
    A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kim, J. Nanosci. Nanotechnol. 15, 540 (2015)CrossRefGoogle Scholar
  11. [11]
    J. Gim, V. Mathew, J. Lim, J. Song, S. Baek, J. Kang, D. Ahn, S. Song, H. Yoon, J. Kim, Sci. Rep. 2, 946 (2012)CrossRefGoogle Scholar
  12. [12]
    L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, J. Mater. Chem. 22, 23541 (2012)CrossRefGoogle Scholar
  13. [13]
    X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao, S. Luan, C. Li, A.C.S. Appl, Mater. Interfaces 5, 997 (2013)CrossRefGoogle Scholar
  14. [14]
    P. Zhang, Z.P. Guo, Y. Huang, D. Jia, H.K. Liu, J. Power Sources 196, 6987 (2011)CrossRefGoogle Scholar
  15. [15]
    D. Larcher, G. Sudant, J.B. Leriche, Y. Chabre, J.M. Tarascon, J. Electrochem. Soc. 149, A234 (2002)CrossRefGoogle Scholar
  16. [16]
    Y. Wang, B. Wang, F. Xiao, Z. Huang, Y. Wang, C. Richardson, Z. Chen, L. Jiao, H. Yuan, J. Power Sources 298, 203 (2015)CrossRefGoogle Scholar
  17. [17]
    J. Chen, X. Xia, J. Tu, Q. Xiong, Y. Yu, X. Wang, C. Gu, J. Mater. Chem. 22, 15056 (2012)CrossRefGoogle Scholar
  18. [18]
    N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, J. Power Sources 200, 53 (2012)CrossRefGoogle Scholar
  19. [19]
    J. Liu, Y. Wan, C. Liu, W. Liu, S. Ji, Y. Zhou, J. Wang, Eur. J. Inorg. Chem. 2012, 3825 (2012)CrossRefGoogle Scholar
  20. [20]
    J. Wu, L. Zuo, Y. Song, Y. Chen, R. Zhou, S. Chen, L. Wang, J. Alloys Compd. 656, 745 (2016)CrossRefGoogle Scholar
  21. [21]
    Z. Fang, W. Xua, T. Huang, M. Li, W. Wang, Y. Liu, C. Mao, F. Meng, M. Wang, M. Cheng, A. Yu, X. Guo, Mater. Res. Bull. 48, 4419 (2013)CrossRefGoogle Scholar
  22. [22]
    L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, J. Mater. Chem. A 1, 1141 (2013)CrossRefGoogle Scholar
  23. [23]
    Y. Wang, F. Yan, S.W. Liu, A.Y.S. Tan, H. Song, X.W. Sun, H.Y. Yang, J. Mater. Chem. A 1, 5212 (2013)CrossRefGoogle Scholar
  24. [24]
    N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 116, 7227 (2012)CrossRefGoogle Scholar
  25. [25]
    J. Park, G. Kim, H.N. Umh, I. Nam, S. Park, Y. Kim, J. Yi, J. Nanopart. Res. 15, 1943 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Subhalaxmi Mohapatra
    • 1
  • Shantikumar V. Nair
    • 1
  • Alok Kumar Rai
    • 1
  1. 1.Amrita Centre for Nanosciences and Molecular MedicineAmrita Vishwa Vidyapeetham, Amrita UniversityKochiIndia

Personalised recommendations