Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 164–170 | Cite as

Synthesis of Co3O4 Nanoparticles Wrapped Within Full Carbon Matrix as an Anode Material for Lithium Ion Batteries

  • Subhalaxmi Mohapatra
  • Shantikumar V. Nair
  • Alok Kumar Rai
Article
  • 43 Downloads

Abstract

A facile polyol-assisted pyro-synthesis method was used to synthesize Co3O4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy showed that the Co3O4 nanoparticles (~20 ± 5 nm) are tightly enwrapped within the carbon matrix. CHN analysis determined the carbon content was only 0.11% in the final annealed sample. The Co3O4@carbon exhibited high capacities and excellent cycling performance as an anode at various current rates (such as 914.4 and 515.5 mAh g−1 at 0.25 and 1.0 C, respectively, after 50 cycles; 318.2 mAh g−1 at a high current rate of 5.0 C after 25 cycles). This superior electrochemical performance of the electrode can be attributed to the various aspects, such as, (1) the existence of carbon matrix, which acts as a flexible buffer to accommodate the volume changes during Li+ ion insertion/deinsertion and facilitates the fast Li+ and electron transfer and (2) the anchoring of Co3O4 nanoparticles within the carbon matrix prevents particles agglomeration.

Keywords

Co3O4 Carbon matrix Pyro-synthesis Anode Lithium ion battery 

Notes

Acknowledgements

Alok Kumar Rai is grateful to Department of Science and Technology (DST), New Delhi, Government of India, for the award of Ramanujan Fellowship (SB/S2/RJN-044/2015). This work was also supported by the Science and Engineering Research Board (SERB), Government of India (Grant No. YSS/2015/000489).

References

  1. [1]
    A.K. Rai, J. Gim, L.T. Anh, J. Kim, Electrochim. Acta 100, 63 (2013)CrossRefGoogle Scholar
  2. [2]
    H. Long, M. Zhang, Q. Wang, L. Xing, S. Wang, X. Xue, J. Alloys Compd. 701, 200 (2017)CrossRefGoogle Scholar
  3. [3]
    Q. Wang, B. Yu, X. Li, L. Xing, X. Xue, J. Mater. Chem. A 4, 425 (2016)CrossRefGoogle Scholar
  4. [4]
    L. Xing, Z. Chen, X. Xue, Solid State Sci. 32, 88 (2014)CrossRefGoogle Scholar
  5. [5]
    L. Xing, Y. Zhao, J. Zhao, Y. Nie, P. Deng, Q. Wang, X. Xue, J. Alloys Compd. 586, 28 (2014)CrossRefGoogle Scholar
  6. [6]
    Q. Wang, C. Zhang, X. Xia, L. Xing, X. Xue, Mater. Lett. 112, 162 (2013)CrossRefGoogle Scholar
  7. [7]
    M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)CrossRefGoogle Scholar
  8. [8]
    D. Qiu, G. Bu, B. Zhao, Z. Lin, L. Pu, L. Pan, Y. Shi, Mater. Lett. 119, 12 (2014)CrossRefGoogle Scholar
  9. [9]
    X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang, Q. Jiang, Sci. Rep. 5, 16629 (2015)CrossRefGoogle Scholar
  10. [10]
    A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kim, J. Nanosci. Nanotechnol. 15, 540 (2015)CrossRefGoogle Scholar
  11. [11]
    J. Gim, V. Mathew, J. Lim, J. Song, S. Baek, J. Kang, D. Ahn, S. Song, H. Yoon, J. Kim, Sci. Rep. 2, 946 (2012)CrossRefGoogle Scholar
  12. [12]
    L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, J. Mater. Chem. 22, 23541 (2012)CrossRefGoogle Scholar
  13. [13]
    X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao, S. Luan, C. Li, A.C.S. Appl, Mater. Interfaces 5, 997 (2013)CrossRefGoogle Scholar
  14. [14]
    P. Zhang, Z.P. Guo, Y. Huang, D. Jia, H.K. Liu, J. Power Sources 196, 6987 (2011)CrossRefGoogle Scholar
  15. [15]
    D. Larcher, G. Sudant, J.B. Leriche, Y. Chabre, J.M. Tarascon, J. Electrochem. Soc. 149, A234 (2002)CrossRefGoogle Scholar
  16. [16]
    Y. Wang, B. Wang, F. Xiao, Z. Huang, Y. Wang, C. Richardson, Z. Chen, L. Jiao, H. Yuan, J. Power Sources 298, 203 (2015)CrossRefGoogle Scholar
  17. [17]
    J. Chen, X. Xia, J. Tu, Q. Xiong, Y. Yu, X. Wang, C. Gu, J. Mater. Chem. 22, 15056 (2012)CrossRefGoogle Scholar
  18. [18]
    N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, J. Power Sources 200, 53 (2012)CrossRefGoogle Scholar
  19. [19]
    J. Liu, Y. Wan, C. Liu, W. Liu, S. Ji, Y. Zhou, J. Wang, Eur. J. Inorg. Chem. 2012, 3825 (2012)CrossRefGoogle Scholar
  20. [20]
    J. Wu, L. Zuo, Y. Song, Y. Chen, R. Zhou, S. Chen, L. Wang, J. Alloys Compd. 656, 745 (2016)CrossRefGoogle Scholar
  21. [21]
    Z. Fang, W. Xua, T. Huang, M. Li, W. Wang, Y. Liu, C. Mao, F. Meng, M. Wang, M. Cheng, A. Yu, X. Guo, Mater. Res. Bull. 48, 4419 (2013)CrossRefGoogle Scholar
  22. [22]
    L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, J. Mater. Chem. A 1, 1141 (2013)CrossRefGoogle Scholar
  23. [23]
    Y. Wang, F. Yan, S.W. Liu, A.Y.S. Tan, H. Song, X.W. Sun, H.Y. Yang, J. Mater. Chem. A 1, 5212 (2013)CrossRefGoogle Scholar
  24. [24]
    N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 116, 7227 (2012)CrossRefGoogle Scholar
  25. [25]
    J. Park, G. Kim, H.N. Umh, I. Nam, S. Park, Y. Kim, J. Yi, J. Nanopart. Res. 15, 1943 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Subhalaxmi Mohapatra
    • 1
  • Shantikumar V. Nair
    • 1
  • Alok Kumar Rai
    • 1
  1. 1.Amrita Centre for Nanosciences and Molecular MedicineAmrita Vishwa Vidyapeetham, Amrita UniversityKochiIndia

Personalised recommendations