Skip to main content
Log in

Synthesis of Co3O4 Nanoparticles Wrapped Within Full Carbon Matrix as an Anode Material for Lithium Ion Batteries

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A facile polyol-assisted pyro-synthesis method was used to synthesize Co3O4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy showed that the Co3O4 nanoparticles (~20 ± 5 nm) are tightly enwrapped within the carbon matrix. CHN analysis determined the carbon content was only 0.11% in the final annealed sample. The Co3O4@carbon exhibited high capacities and excellent cycling performance as an anode at various current rates (such as 914.4 and 515.5 mAh g−1 at 0.25 and 1.0 C, respectively, after 50 cycles; 318.2 mAh g−1 at a high current rate of 5.0 C after 25 cycles). This superior electrochemical performance of the electrode can be attributed to the various aspects, such as, (1) the existence of carbon matrix, which acts as a flexible buffer to accommodate the volume changes during Li+ ion insertion/deinsertion and facilitates the fast Li+ and electron transfer and (2) the anchoring of Co3O4 nanoparticles within the carbon matrix prevents particles agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.K. Rai, J. Gim, L.T. Anh, J. Kim, Electrochim. Acta 100, 63 (2013)

    Article  Google Scholar 

  2. H. Long, M. Zhang, Q. Wang, L. Xing, S. Wang, X. Xue, J. Alloys Compd. 701, 200 (2017)

    Article  Google Scholar 

  3. Q. Wang, B. Yu, X. Li, L. Xing, X. Xue, J. Mater. Chem. A 4, 425 (2016)

    Article  Google Scholar 

  4. L. Xing, Z. Chen, X. Xue, Solid State Sci. 32, 88 (2014)

    Article  Google Scholar 

  5. L. Xing, Y. Zhao, J. Zhao, Y. Nie, P. Deng, Q. Wang, X. Xue, J. Alloys Compd. 586, 28 (2014)

    Article  Google Scholar 

  6. Q. Wang, C. Zhang, X. Xia, L. Xing, X. Xue, Mater. Lett. 112, 162 (2013)

    Article  Google Scholar 

  7. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)

    Article  Google Scholar 

  8. D. Qiu, G. Bu, B. Zhao, Z. Lin, L. Pu, L. Pan, Y. Shi, Mater. Lett. 119, 12 (2014)

    Article  Google Scholar 

  9. X. Leng, S. Wei, Z. Jiang, J. Lian, G. Wang, Q. Jiang, Sci. Rep. 5, 16629 (2015)

    Article  Google Scholar 

  10. A.K. Rai, L.T. Anh, J. Gim, V. Mathew, J. Kim, J. Nanosci. Nanotechnol. 15, 540 (2015)

    Article  Google Scholar 

  11. J. Gim, V. Mathew, J. Lim, J. Song, S. Baek, J. Kang, D. Ahn, S. Song, H. Yoon, J. Kim, Sci. Rep. 2, 946 (2012)

    Article  Google Scholar 

  12. L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, J. Mater. Chem. 22, 23541 (2012)

    Article  Google Scholar 

  13. X. Yang, K. Fan, Y. Zhu, J. Shen, X. Jiang, P. Zhao, S. Luan, C. Li, A.C.S. Appl, Mater. Interfaces 5, 997 (2013)

    Article  Google Scholar 

  14. P. Zhang, Z.P. Guo, Y. Huang, D. Jia, H.K. Liu, J. Power Sources 196, 6987 (2011)

    Article  Google Scholar 

  15. D. Larcher, G. Sudant, J.B. Leriche, Y. Chabre, J.M. Tarascon, J. Electrochem. Soc. 149, A234 (2002)

    Article  Google Scholar 

  16. Y. Wang, B. Wang, F. Xiao, Z. Huang, Y. Wang, C. Richardson, Z. Chen, L. Jiao, H. Yuan, J. Power Sources 298, 203 (2015)

    Article  Google Scholar 

  17. J. Chen, X. Xia, J. Tu, Q. Xiong, Y. Yu, X. Wang, C. Gu, J. Mater. Chem. 22, 15056 (2012)

    Article  Google Scholar 

  18. N. Jayaprakash, W.D. Jones, S.S. Moganty, L.A. Archer, J. Power Sources 200, 53 (2012)

    Article  Google Scholar 

  19. J. Liu, Y. Wan, C. Liu, W. Liu, S. Ji, Y. Zhou, J. Wang, Eur. J. Inorg. Chem. 2012, 3825 (2012)

    Article  Google Scholar 

  20. J. Wu, L. Zuo, Y. Song, Y. Chen, R. Zhou, S. Chen, L. Wang, J. Alloys Compd. 656, 745 (2016)

    Article  Google Scholar 

  21. Z. Fang, W. Xua, T. Huang, M. Li, W. Wang, Y. Liu, C. Mao, F. Meng, M. Wang, M. Cheng, A. Yu, X. Guo, Mater. Res. Bull. 48, 4419 (2013)

    Article  Google Scholar 

  22. L. Zhuo, Y. Wu, J. Ming, L. Wang, Y. Yu, X. Zhang, F. Zhao, J. Mater. Chem. A 1, 1141 (2013)

    Article  Google Scholar 

  23. Y. Wang, F. Yan, S.W. Liu, A.Y.S. Tan, H. Song, X.W. Sun, H.Y. Yang, J. Mater. Chem. A 1, 5212 (2013)

    Article  Google Scholar 

  24. N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 116, 7227 (2012)

    Article  Google Scholar 

  25. J. Park, G. Kim, H.N. Umh, I. Nam, S. Park, Y. Kim, J. Yi, J. Nanopart. Res. 15, 1943 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Alok Kumar Rai is grateful to Department of Science and Technology (DST), New Delhi, Government of India, for the award of Ramanujan Fellowship (SB/S2/RJN-044/2015). This work was also supported by the Science and Engineering Research Board (SERB), Government of India (Grant No. YSS/2015/000489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Rai.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Nair, S.V. & Rai, A.K. Synthesis of Co3O4 Nanoparticles Wrapped Within Full Carbon Matrix as an Anode Material for Lithium Ion Batteries. Acta Metall. Sin. (Engl. Lett.) 31, 164–170 (2018). https://doi.org/10.1007/s40195-017-0622-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0622-3

Keywords

Navigation