Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 208–215 | Cite as

A Multi-phase Field Model for Static Recrystallization of Hot Deformed Austenite in a C–Mn Steel

  • Jun Zhang
  • Cheng-Wu Zheng
  • Dian-Zhong Li
Article

Abstract

A multi-phase-field model has been developed to simulate the microstructure evolution and kinetics of the austenite static recrystallization (SRX) in a C–Mn steel. In this model, the bulk free energy that coupling the deformation stored energy with a special interpolation function is incorporated. Both the deformed grain topology and the deformation stored energy have been included in order to investigate the influence of pre-deformation on the subsequent austenite SRX at different hot deformation levels. Diverse scenarios of microstructure evolution show different deformation-dependent recrystallized grain sizes. The transformation kinetics is then discussed by analyzing the overall SRX fraction and the average interface velocity on the recrystallization front.

Keywords

Phase-field Static recrystallization Microstructure evolution Hot deformation Mesoscopic modeling 

Notes

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant No. 51371169) and (Grant No. 51401214).

References

  1. [1]
    B.K. Panigrahi, Bull. Mater. Sci. 24, 361 (2001)CrossRefGoogle Scholar
  2. [2]
    B. Fu, W.Y. Yang, M.Y. Lu, Q. Feng, L.F. Li, Z.Q. Sun, Mater. Sci. Eng. A 536, 265 (2012)CrossRefGoogle Scholar
  3. [3]
    M. Militzer, ISIJ Int. 47, 1 (2007)CrossRefGoogle Scholar
  4. [4]
    C.M. Sellars, Mater. Sci. Technol. 6, 1072 (1990)CrossRefGoogle Scholar
  5. [5]
    E.S. Puchi-Cabrera, Mater. Sci. Technol. 19, 715 (2003)CrossRefGoogle Scholar
  6. [6]
    M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, Metall. Mater. Trans. A 31, 1247 (2000)CrossRefGoogle Scholar
  7. [7]
    D.S. Liu, F. Fazeli, M. Militzer, W.J. Poole, Metall. Mater. Trans. A 38, 894 (2007)CrossRefGoogle Scholar
  8. [8]
    M.T. Wang, B.Y. Zong, G. Wang, Comput. Mater. Sci. 45, 217 (2009)CrossRefGoogle Scholar
  9. [9]
    Y.J. Gao, Z.R. Luo, X.Y. Hu, C.G. Huang, Acta Metall. Sin. (Engl. Lett) 46, 1161 (2010)CrossRefGoogle Scholar
  10. [10]
    Y. Suwa, Y. Saito, H. Onodera, Comput. Mater. Sci. 44, 286 (2008)CrossRefGoogle Scholar
  11. [11]
    T. Takaki, Y. Tomita, Int. J. Mech. Sci. 52, 320 (2010)CrossRefGoogle Scholar
  12. [12]
    D. Fan, L.Q. Chen, Acta Mater. 45, 611 (1997)CrossRefGoogle Scholar
  13. [13]
    N. Moelans, Acta Mater. 59, 1077 (2011)CrossRefGoogle Scholar
  14. [14]
    B. Nestler, F. Wendler, M. Selzer, B. Stinner, H. Garcke, Phys. Rev. E 78, 011604 (2008)CrossRefGoogle Scholar
  15. [15]
    N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. B 78, 024113 (2008)CrossRefGoogle Scholar
  16. [16]
    C.W. Zheng, N.M. Xiao, D.Z. Li, Y.Y. Li, Comput. Mater. Sci. 45, 568 (2009)CrossRefGoogle Scholar
  17. [17]
    X.Y. Song, M. Rettenmayr, C. Müller, H.E. Exner, Metall. Mater. Trans. A 32, 2199 (2001)CrossRefGoogle Scholar
  18. [18]
    D.N. Hanlon, J. Sietsma, S. van der Zwaag, ISIJ Int. 41, 1028 (2001)CrossRefGoogle Scholar
  19. [19]
    U.F. Kocks, H. Mecking, Prog. Mater Sci. 48, 171 (2003)CrossRefGoogle Scholar
  20. [20]
    C.W. Zheng, N.M. Xiao, D.Z. Li, Y.Y. Li, Comput. Mater. Sci. 44, 507 (2008)CrossRefGoogle Scholar
  21. [21]
    S.B. Davenport, N.J. Silk, C.N. Sparks, C.M. Sellars, Mater. Sci. Technol. 16, 539 (2000)CrossRefGoogle Scholar
  22. [22]
    S.F. Medina, C.A. Hernandez, Acta Mater. 44, 137 (1996)CrossRefGoogle Scholar
  23. [23]
    E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, D. Chicot, Int. J. Plast 51, 145 (2013)CrossRefGoogle Scholar
  24. [24]
    W.P. Sun, M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, Iron Steelmak. 25, 85 (1998)Google Scholar
  25. [25]
    A. Laasraoui, J.J. Jonas, Metall. Trans. A 22, 1545 (1991)CrossRefGoogle Scholar
  26. [26]
    A. Laasraoui, J.J. Jonas, Metall. Trans. A 22, 151 (1991)CrossRefGoogle Scholar
  27. [27]
    J.W. Cahn, W.C. Hagel, in Decomposition of Austenite by Diffusional Processes, ed. by V.F. Zackay, H.I. Aaronson (Interscience Publishers, New York, 1962)Google Scholar
  28. [28]
    R.A. Vandermeer, Scr. Metall. Mater. 27, 1563 (1992)CrossRefGoogle Scholar
  29. [29]
    R.A. Vandermeer, D.J. Jensen, Scr. Metall. Mater. 30, 1575 (1994)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations