Skip to main content
Log in

Multiferroic Consequence of Porous (BiFeO3) x –(BiCrO3)1−x Composite Thin Films by Novel Sol–Gel Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, we have presented a spin-coating method to produce thin films started with pure BiCrO3 (BCO) and ended up with BiFeO3 (BFO) by increasing x values in the (BiFeO3) x –(BiCrO3)1−x composites. All the produced thin films have been crystallized at the annealing temperatures of 400 °C for 0.5 h. The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices. SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width (size) decreased with increasing x values. The strong correlations are observed among the microstructure, dielectric, ferroelectric, ferromagnetic properties and Fe concentration. Among all composites, the composition of 0.75 shows an attractive magnetization, polarization, switching and improved dielectric behaviors at room temperature. Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density, and enhancement of super-exchange magnetic interaction between Fe3+ and Cr3+ at BFO/BCO interface layers. Our result shows that the thin layer on Pt (111)/Ti/SiO2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Razavi, IEEE J. Solid State Circuits 32, 5 (1997)

    Article  Google Scholar 

  2. H. Nwe, Y. Maung, T. Win, K. Soe, Adv. Mater. Res. 557, 1861–1864 (2012)

    Article  Google Scholar 

  3. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys.: Condens. Matter 27, 504002 (2015)

    Google Scholar 

  4. S.K. Singh, K. Sato, K. Maruyama, H. Ishiwara, Jpn. J. Appl. Phys. 45, 37–41 (2006)

    Google Scholar 

  5. S.K. Singh, R. Ueno, H. Funakubo, H. Uchida, S. Koda, H. Ishiwara, Jpn. J. Appl. Phys. 44, 23–28 (2007)

    Google Scholar 

  6. S.K. Singh, S. Shanthy, H. Ishiwara, J. Appl. Phys. 108, 054102 (2010)

    Article  Google Scholar 

  7. Y. Zhang, S. Yu, J. Cheng, J. Eur. Ceramic Soc. 30, 271–275 (2010)

    Article  Google Scholar 

  8. N.A. Hill, P. Bättig, C. Daul, J. Phys. Chem B 106, 3383–3388 (2002)

    Article  Google Scholar 

  9. D.H. Kim, H.N. Lee, M. Varela, H.M. Christen, J. Appl. Phys. 89, 162904 (2006)

    Google Scholar 

  10. J.W. Kim, C.M. Raghavan, J.-W. Kim, S.S. Kim, Ceram. Int. 41, 7211–7215 (2015)

    Article  Google Scholar 

  11. B.R. Kumar, T. Subba Rao, Digest J. Nanomater. Biostruct. 7, 1881–1889 (2012)

    Google Scholar 

  12. L.W. Martin, D.G. Schlom, Curr. Opin. Solid State Mater. Sci. 16, 199–215 (2012)

    Article  Google Scholar 

  13. P. Meenakshi, R. Karthick, M. Selvaraj, S. Ramu, Solar Energy Mater. Solar Cells 128, 264–269 (2014)

    Article  Google Scholar 

  14. B.N. Dash, P. Mallick, R. Biswal, J. Prakash, A. Tripathi, D. Kanjilal, N.C. Mishra, Bull. Mater. Sci. 36, 813–818 (2013)

    Article  Google Scholar 

  15. R. Nechache, C. Harnagea, A. Rudeiger, F. Rosei, A. Pignoletm, Funct. Mater. Lett. 3, 83 (2010)

    Article  Google Scholar 

  16. H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, C.B. Eom, Y.H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 92, 062910 (2008)

    Article  Google Scholar 

  17. J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Appl. Phys. Lett. 84, 526 (2004)

    Article  Google Scholar 

  18. R.V. William, A. Marikani, D. Madhavan, Ceram. Int. 42, 6807–6816 (2016)

    Article  Google Scholar 

  19. L.B. Cheng, C. Chang, X. Zhi, X. Qian, Phys. Lett. A 374, 4265–4268 (2010)

    Article  Google Scholar 

  20. R. Nechache, F. Rosei, J. Solid State Chem. 189, 13–20 (2012)

    Article  Google Scholar 

  21. P. Thiruramanathan, A. Marikani, D. Madhavan, K. Gangatharan, Trans. Indian Inst. Met. (2016). doi:10.1007/s12666-016-0845-4

    Google Scholar 

  22. Y. Chao Li, R. Kwok, Y. Li, S. Chin Tjong, J. Nanomater. 10, 261748 (2010)

    Google Scholar 

  23. K.M. Nair, D. Suvorov, R.W. Schwartz, R. Guo, Advances in Electroceramic Materials, 1st edn. (Wiley, Hoboken, 2009), p. 162

    Book  Google Scholar 

  24. C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, J. Appl. Phys. 99, 054104 (2006)

    Article  Google Scholar 

  25. H. Li, J. Zhu, J. Zhuang, Y. Hu, M. Huai, Q. Yang, J. Sol–Gel Sci. Technol. (2015). doi:10.1007/s10971-015-3706-4

    Google Scholar 

  26. X.J. Lou, J. Wang, J. Appl. Phys. 108, 034104 (2010)

    Article  Google Scholar 

  27. J. Wu, J. Wang, D. Xiao, J. Zhu, J. Appl. Phys. 109, 124118 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Department of Science and Technology (SB/S2/CMP- 028/2013), New Delhi, India. Authors are grateful to IIT-SAIF (Chennai) and UGC-DAE, Indore, for the experimental facilities and extended support. The authors also acknowledge the support rendered from the management and Dr. S. Arivazhagan, Principal of Mepco Schlenk Engineering College, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marikani Arumugam.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Victor, W., Arumugam, M., Pandirengan, T. et al. Multiferroic Consequence of Porous (BiFeO3) x –(BiCrO3)1−x Composite Thin Films by Novel Sol–Gel Method. Acta Metall. Sin. (Engl. Lett.) 31, 299–307 (2018). https://doi.org/10.1007/s40195-017-0593-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0593-4

Keywords

Navigation