Acta Metallurgica Sinica (English Letters)

, Volume 31, Issue 2, pp 199–207 | Cite as

Solubility and Anisotropic Migration Behaviors of Helium in bcc Iron Under Strain

Article
  • 79 Downloads

Abstract

The different solution and migration behaviors of tetrahedral and octahedral interstitial helium in bcc iron have been investigated by using first principles calculations. We showed that the tetrahedral site has less charge transfer and less redistribution of the density of states but stronger bonding and a lower solution energy. This is due to the coupling between the symmetrical facts of the two interstitial atoms and the 3d orbitals of Fe atoms. The solution energies of both sites are not significantly influenced by applied normal strains of 2% and 4%. In contrast, the migration barriers have the reverse trends for different migration directions under strain, which can be explained by an anisotropic elastic energy change and charge transfer. The lower migration energy along certain directions under strain can facilitate the segregation of helium and the formation of helium bubbles.

Keywords

Strain Point defects Migration Density functional theory (DFT) Iron Helium embrittlement 

Notes

Acknowledgements

This work was supported by the National Basic Research Programs of China (Nos. 2015GB118001, 2015CB654802, 20151080369 and 20141300796).

References

  1. [1]
    H. Tanigawa, K. Shiba, A. Möslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, J. Nucl. Mater. 417, 9 (2011)CrossRefGoogle Scholar
  2. [2]
    J.F. Salavy, L.V. Boccaccini, P. Chaudhuri, S. Cho, M. Enoeda, L.M. Giancarli, R.J. Kurtz, T.Y. Luo, K. Bhanu Sankara Rao, C.P.C. Wong, Fusion Eng. Des. 85, 1896 (2010)CrossRefGoogle Scholar
  3. [3]
    R.J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, C. Petersen, M.A. Sokolov, P. Spätig, J.W. Rensman, J. Nucl. Mater. 386–388, 411 (2009)CrossRefGoogle Scholar
  4. [4]
    W. Liu, C. Zhang, Z. Xia, Z. Yang, J. Nucl. Mater. 455, 402 (2014)CrossRefGoogle Scholar
  5. [5]
    M.R. Gilbert, S.L. Dudarev, S. Zheng, L.W. Packer, J.-Ch. Sublet, Nucl. Fusion 52, 083019 (2012)CrossRefGoogle Scholar
  6. [6]
    E.E. Bloom, J.T. Busby, C.E. Duty, P.J. Maziasz, T.E. McGreevy, B.E. Nelson, B.A. Pint, P.F. Tortorelli, S.J. Zinkle, J. Nucl. Mater. 367–370, 1 (2007)CrossRefGoogle Scholar
  7. [7]
    S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009)CrossRefGoogle Scholar
  8. [8]
    W. Liu, C. Zhang, Z. Yang, Z. Xia, Mater. Sci. Eng. A 583, 61 (2013)CrossRefGoogle Scholar
  9. [9]
    A. Hasegawa, M. Ejiri, S. Nogami, M. Ishiga, R. Kasada, A. Kimura, K. Abe, S. Jitsukawa, J. Nucl. Mater. 386, 241 (2009)CrossRefGoogle Scholar
  10. [10]
    R.E. Stoller, J. Nucl. Mater. 174, 289 (1990)CrossRefGoogle Scholar
  11. [11]
    B. Fu, B. Xu, W. Lai, Y. Yuan, H. Xu, C. Li, Y. Jia, W. Liu, J. Nucl. Mater. 441, 24 (2013)CrossRefGoogle Scholar
  12. [12]
    W. Liu, C. Zhang, Y. Ji, Z. Yang, H. Zang, T. Shen, L. Chen, Appl. Phys. Lett. 105, 121905 (2014)CrossRefGoogle Scholar
  13. [13]
    Z. Xia, C. Zhang, H. Lan, Z. Liu, Z. Yang, Mater. Lett. 65, 937 (2011)CrossRefGoogle Scholar
  14. [14]
    S.J. Zinkle, Fusion Sci. Technol. 64, 65 (2013)CrossRefGoogle Scholar
  15. [15]
    S. Jiang, F. Wan, Y. Long, J. He, P. Liu, S. Ohnuki, N. Hashimoto, Acta Metall. Sin. (Engl. Lett.) 26, 303 (2013)CrossRefGoogle Scholar
  16. [16]
    D.N. Braski, H. Schroeder, H. Ullmaier, J. Nucl. Mater. 83, 265 (1979)CrossRefGoogle Scholar
  17. [17]
    L. Mansur, W. Coghlan, J. Nucl. Mater. 119, 1 (1983)CrossRefGoogle Scholar
  18. [18]
    P. Trocellier, S. Miro, Y. Serruys, S. Vaubaillon, S. Pellegrino, S. Agarwal, S. Moll, L. Beck, Nucl. Instrum. Methods Phys. Res. B 331, 55 (2014)CrossRefGoogle Scholar
  19. [19]
    D. Stewart, Y. Osetskiy, R. Stoller, J. Nucl. Mater. 417, 1110 (2011)CrossRefGoogle Scholar
  20. [20]
    C.C. Fu, F. Willaime, Phys. Rev. B 72, 064117 (2005)CrossRefGoogle Scholar
  21. [21]
    C.S. Deo, M.A. Okuniewski, S.G. Srivilliputhur, S.A. Maloy, M.I. Baskes, M.R. James, J.F. Stubbins, J. Nucl. Mater. 361, 141 (2007)CrossRefGoogle Scholar
  22. [22]
    P. Zhang, T. Zou, J. Zhao, J. Nucl. Mater. 467, 465 (2015)CrossRefGoogle Scholar
  23. [23]
    T. Seletskaia, Y.N. Osetsky, R.E. Stoller, G.M. Stocks, J. Nucl. Mater. 351, 109 (2006)CrossRefGoogle Scholar
  24. [24]
    J. Cai, D. Lu, Acta Metall. Sin. (Engl. Lett.) 26, 25 (2013)CrossRefGoogle Scholar
  25. [25]
    C. Becquart, C. Domain, Phys. Rev. Lett. 97, 196402 (2006)CrossRefGoogle Scholar
  26. [26]
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)CrossRefGoogle Scholar
  27. [27]
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)CrossRefGoogle Scholar
  28. [28]
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  29. [29]
    W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matter 21, 084204 (2009)CrossRefGoogle Scholar
  30. [30]
    E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28, 899 (2007)CrossRefGoogle Scholar
  31. [31]
    G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)CrossRefGoogle Scholar
  32. [32]
    G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)CrossRefGoogle Scholar
  33. [33]
    G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)CrossRefGoogle Scholar
  34. [34]
    K. Morishita, R. Sugano, B.D. Wirth, T. Diaz de la Rubia, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 202, 76 (2003)CrossRefGoogle Scholar
  35. [35]
    H.B. Zhou, S. Jin, Y. Zhang, G.H. Lu, F. Liu, Phys. Rev. Lett. 109, 135502 (2012)CrossRefGoogle Scholar
  36. [36]
    C. Elsässer, M. Fähnle, L. Schimmele, C.T. Chan, K.M. Ho, Phys. Rev. B 50, 5155 (1994)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yue Yu
    • 1
  • Ben Xu
    • 1
  • Hao Chen
    • 1
  • Zhi-Gang Yang
    • 1
  • Chi Zhang
    • 1
  1. 1.Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations